

Deliverable D6.1 “Initial system design and prototyping”

1

IdeNtity verifiCatiOn with privacy-preservinG credeNtIals for anonymous

access To Online services

WP6 – Platform realization and integration

Deliverable D6.1 “Initial system design and prototyping”

Marie Sklodowska Curie,

Research and Innovation Staff

Exchange (RISE)

Editor(s): CSGN

Author(s): Anca Zugravu (ESR, CSGN – secondee), Petru Scurtu (ER,

CSGN – outside secondment), Vaios Bolgouras (ESR,

UPRC – outside secondment), Markos Charalambous

(ESR, CUT - secondee), Ioana Stroinea (ESR, CSGN –

secondee), Nikos Salamanos (ER, CUT – outside

secondment), Konstantinos Papadamou (ER, CUT – outside

secondment), Evangelos Kotsifakos (ER, LST – outside

secondment), George Kalatzantonakis (ESR, LST – outside

secondment), Michael Sirivianos (ER, CUT – outside

secondment), Christos Xenakis (ER, UPRC – outside

secondment), George Gugulea (ER, CSGN – outside

secondment)

Dissemination Level: Public

Nature: Report

Version: 1.0

INCOGNITO is funded by the European Commission”s Horizon 2020 Research and Innovation Framework

program under the Marie Skłodowska-Curie Research and Innovation Staff Exchanges Action, Grant Agreement

no 824015. The content of this deliverable reflects only the views of the project owner. The European Agency /

Commision is not responsible for any use that may be made of the information it contains.

PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the INCOGNITO Consortium. Neither this document nor the information

contained herein shall be used, duplicated or communicated by any means to any third party, in whole or in parts, except with prior

written consent of the INCOGNITO consortium.

Ref. Ares(2021)4281460 - 01/07/2021

Deliverable D6.1 “Initial system design and prototyping”

2

Project Profile

Contract Number 824015

Acronym INCOGNITO

Title IdeNtity verifiCatiOn with privacy-preservinG credeNtIals for anonymous access

To Online services

Start Date Jan 1st, 2019

Duration 48 Months

Partners

TECHNOLOGIKO

PANEPISTIMIO KYPROU

(BEN2, CUT)

Cyprus

 University of Piraeus research

center (BEN1, UPRC)

Greece

Certsign SA (BEN3, CSGN) Romania

Telefonica Investigacion Y

Desarrollo SA (BEN6, TID)
Spain

LSTech Espana SL (BEN4, LST)

Spain

FOGUS INNOVATIONS &

SERVICES P.C. (BEN7, FOG)
Greece

Deliverable D6.1 “Initial system design and prototyping”

3

Document History

VERSIONS

Version Date Author Remarks

0.1 21/01/2021
Anca Zugravu, Ioana

Stroinea
Table of Contents

0.2 16/02/2021

Konstantinos Papadamou,

Vaios Bolgouras, Markos

Charalambous, Evangelos

Kotsifakos

TOC revision

0.5 20/03/2021

Konstantinos Papadamou,

Vaios Bolgouras, Markos

Charalambous, Evangelos

Kotsifakos, George

Kalatzantonakis, Petru

Scurtu

Architectural Components

0.7 20/04/2021

Konstantinos Papadamou,

Vaios Bolgouras, Markos

Charalambous, Evangelos

Kotsifakos, George

Kalatzantonakis, Petru

Scurtu, Anca Zugravu

Software Components

0.8 22/05/2021

Anca Zugravu, Petru Scurtu,

Vaios Bolgouras, Markos

Charalambous, Evangelos

Kotsifakos

Integration Platform

0.9 25/06/2021

Evangelos Kotsifakos,

Michael Sirivianos, Christos

Xenakis, Nikos Salamanos,

George Gugulea

Document Review

1.0 30/06/2021 Nikos Passas Final Version

Contract delivery due date: 30/06/2021 (M30)

Actual delivery date of version n.1: 30/06/2021 (M30)

Fellow ID Name/Surname Researcher

category
Declaration No. PM

6 Markos Charalambous ESR 3 3

11 Ioana Stroinea ESR 18 0.13

23 Anca Zugravu ESR 21 5.87

Deliverable D6.1 “Initial system design and prototyping”

4

Executive Summary

The purpose of this deliverable D6.1 "Initial system design and prototyping" is to present an

overview of the initial integrated INCOGNITO platform. It is part of Work Package 6 and it aims

to describe the software and hardware components of the system. Moreover, this document covers

information about the techniques, tools, technologies and methodologies used to integrate the sub-

modules into one system. Having in mind the already defined architectural and software

components of the system, we follow the Agile development methodology and we employ CI/CD

tools like Jenkins, Docker and Kubernetes, and collaboration tools such as Phabricator, Git and

OneDrive to define the initial system design and integration.

The intent of the deliverable is to have a well-defined foundation of the platform upon which more

modules will be added as the project continues its progress.

Deliverable D6.1 “Initial system design and prototyping”

5

Table of Contents

Executive Summary .. 4

Table of Contents ... 5

List of Figures ... 6

Table of Abbreviations .. 7

1 Introduction ... 8

2 Integration methodology ... 9

3 The System-level prototype .. 13

3.1 Architectural components .. 13
3.1.1 Identity Consolidator .. 13

3.1.2 User-Device .. 14

3.1.3 Identity Provider ... 15
3.1.4 Service Provider .. 15

3.2 Software Components .. 16

3.2.1 Identity Acquisition and Management .. 16
3.2.2 Qualified Anonymity software components ... 18
3.2.3 Decentralized Identity Management ... 21

3.2.4 Consent Management/User-Managed Access .. 22
3.2.5 UI/UX AI-based Assistant .. 23

4 The Integration Platform ... 25

4.1 Collaborative tools ... 25
4.1.1 Phabricator .. 25

4.1.2 GitLab ... 26
4.1.3 Git ... 26
4.1.4 Office365 – One Drive.. 27

4.2 Continuous Integration and Continuous Deployment tools ... 27
4.2.1 Jenkins... 27

4.2.2 Docker ... 28
4.2.3 Kubernetes .. 30

4.3 Hardware platform ... 36

5 Conclusions ... 37

6 References ... 38

Deliverable D6.1 “Initial system design and prototyping”

6

List of Figures
Figure 1. Waterfall Methodology vs Agile Methodology .. 10
Figure 2. CI/CD pipeline in INCOGNITO ... 12
Figure 3. Identity Acquisition and Integration Platform ... 18

Figure 4. Federated authentication flow ... 20
Figure 5. Decentralized Identity Management.. 22
Figure 6. Rasa conversational assistant .. 24
Figure 7. Example of organizing task on the board .. 25
Figure 8. Creating a new branch from the Master branch .. 26

Figure 9. Git Local and Remote Repositories workflow .. 27
Figure 10. Docker Container components .. 29

Figure 11. Docker workflow ... 29
Figure 12. Kubernetes Deployment functionality ... 31
Figure 13. The pods in Rasa Deployment ... 35
Figure 14. The services in Rasa Deployment ... 35

Figure 15. The deployments in Rasa Deployment .. 35
Figure 16. ReplicaSets in Rasa Deployment... 35
Figure 17. The StatefulSets in Rasa Deployment ... 36

Deliverable D6.1 “Initial system design and prototyping”

7

Table of Abbreviations

ABAC Attribute-based Access Control

AI Artificial Intelligence

API Application Programming Interface

BAC Basic Access Control

FIDO2 Fast IDentity Online version 2

HTTP Hypertext Transfer Protocol

ID Identity

IDC Identity Consolidator

IdP Identity Provider

IIM Identity Integration Module

IoT Internet of Things

JSON JavaScript Object Notation

NFC Near-Field Communication

OAuth Open Authentication

OCR Optical Character Recognition

OIDC OpenID Connect

QA Qualified Anonymity

REST Representation State Transfer

RFID Radio Frequency Identification

SSL Secure Sockets Layer

SP Service Provider

TLS Transport Layer Security

UD User Device

UI User Interface

UMA User-Managed Access

UX User Experience

XML eXtensible Markup Language

CI/CD Continuous Integration / Continuous Deployment

SSH Secure Shell

Deliverable D6.1 “Initial system design and prototyping”

8

1 Introduction

The objective of this deliverable is to provide an overview of the first version of the application

and how the software modules will be integrated together.

Three main topics are addressed: the software components that are going to be integrated, the

hardware components and the technologies and methodologies used for the integration. We

provide a detailed description of the deployment process and software development practices. We

also cover the CI/CD (Continuous Integration and Continuous Deployment) pipelines that help

with the process automation. Moreover, we have a dedicated part for the software modules that

have been already deployed on the integration server.

The aim of this document is to offer enough insight on what technologies and steps are needed in

order to recreate the same system from physical infrastructure to software modules. That is why

we delivered a comprehensive description of the tools accompanied by their minimum

requirements and configuration specifications.

Deliverable D6.1 “Initial system design and prototyping”

9

2 Integration methodology

In this chapter we describe the optimal practices the team will be using to link together and

integrate all the sub-systems developed in INCOGNITO.

Considering the fact that the researchers involved in this project are spread across Europe,

consisting an international team of developers, a series of software engineering practices to

collaborate as efficiently as possible are needed.

Moreover, the software modules were not developed sequentially; therefore, it is necessary to

diminish the possible errors when integrating them.

Another challenge the developers have to face is finding the optimal work style in the ongoing

COVID19 pandemic by making sure that in some cases, not working in the organization premises

does not impede collaboration. Maintaining the quality of the cooperation at a high level in order

to increase efficiency is of utmost importance.

Agile Development Methodology

Agile software development refers to a set of practices applied to iterative development, where the

software is delivered incrementally instead of all at once [1]. This methodology embraces

teamwork, self-organization and continuous monitoring and adaptation when new challenges

occur.

The Agile methodology was designed to change and improve the Waterfall development model.

The Waterfall paradigm follows a linear and sequential method, contrary to the iterative approach

of the Agile methodology. This means that tasks and activities in the waterfall model move to the

next phase only after the ones in the current phase have been completed.

Deliverable D6.1 “Initial system design and prototyping”

10

Figure 1. Waterfall Methodology vs Agile Methodology

As seen in Figure 1, in a Waterfall model, the project relies on the initial requirements to a great

extent. In Agile, these initial requirements are checked and confirmed throughout the entire

development life-cycle. This type of approach is essential not only for the software modules we

are developing, but also for the deliverable submission phase when there is a request to review the

submitted document. Having flexibility in case of potential changes results in a higher quality end

product, be it in the form of deployed software or well documented deliverables.

Adopting the Agile methodology offers us the perfect balance between responding to changes and

following a predefined workflow. These changes are not only on a technical level regarding the

software, but also on the team level, as a result of a constant flow of new arriving secondees in the

project.

Moreover, considering that this deliverable serves as a foundation for the final integrated version

of the system, new software modules will be delivered and will require integration until the final

months of this project. This is why it is important to have consistency in the integration

methodology.

Borrowing some of the Agile methodology principles, there are a few key practices the team is

following during the software development process:

1. Organize and keep track of the tasks using Phabricator1

1 https://www.phacility.com/phabricator/

Deliverable D6.1 “Initial system design and prototyping”

11

2. Have a centralized version of the code in multiple repositories using GitLab

3. Keep each other updated by hosting online meetings whenever needed

4. Collaborate on tasks of high priority and participate in knowledge sharing activities to

speed up the deployment process and gather new skills

5. Share ideas and address technical issues in a quick manner on platforms like Slack, created

for software development teams

CI/CD Pipelines in INCOGNITO

A CI/CD pipeline is a series of steps configured with the purpose of delivering new versions of an

application and it is devised into two major sub-processes: Continuous Integration and Continuous

Delivery. Continuous Integration (CI) means new code changes are regularly built and added to a

central shared repository. When developers practice CI, the software and database components are

packaged together and the automation executes unit tests. The tests are essential for providing

feedback to developers about how the new code they have committed integrated successfully with

the already existing one. If the tests fail, a rollback will trigger with the purpose of bringing the

application back to a stable functional version. Continuous Delivery (CD) means that every new

feature of the application that proves itself to be functional after the automated tests is integrated

and deployed with the application running in a production environment. Depending on the tool,

the developers usually have the option to choose if the builds are triggered by code commits or on

a defined schedule. In more complex systems, the code can be deployed simultaneously to different

environments, like production, staging and testing.

The CI/CD concept is substantial because some of the pipeline's steps can be automated, resulting

in speeding up the process and minimizing the number of errors.

From task creation to deployment, the workflow of software development in INCOGNITO should

follow these steps:

1. The developer creates a task in Phabricator for the feature they are working on or picks a task

that has been already created

2. The developer writes the code necessary for the development of the selected feature

3. The developer tracks changes for the written code in a local repository using Git, then

synchronizes them with the corresponding remote repository on GitLab

4. Jenkins pulls the code from the central repository on GitLab, runs a suite of tests and builds the

deployment artifacts

5. Jenkins creates a docker image with the built artefacts

Deliverable D6.1 “Initial system design and prototyping”

12

6. Docker sends the docker image to the Docker Registry

7. Kubernetes pulls the image from the registry and deploys the image inside pods deployed on

the integration platform

Figure 2. CI/CD pipeline in INCOGNITO

Deliverable D6.1 “Initial system design and prototyping”

13

3 The System-level prototype

The INCOGNITO platform consists of a set of software components that are deployed on the

hardware infrastructure provided for this project. The software consists of developed modules in

the working packages. The hardware is where these modules run and will be integrated. The

client-side component of the hardware is the user device, where the user accesses the application.

The server-side component of the hardware is where the components accessed by the user device

will be kept.

Next, we describe in detail the different components.

3.1 Architectural components

3.1.1 Identity Consolidator

INCOGNITO’s central node is the Identity Consolidator which integrates multiple

modules/platforms that offer the user a unique identity acquisition, verification, and management

solution:

The Identity Consolidator is the place where the online identity of the user lies. It has modules that

gather real-world and online information about a user and makes one central trusted identity.

After transposing this user information into identity attributes at the Identity Consolidator, the

latter acts as a connection point between the user and Identity or Service Providers. It mediates

and makes trustworthy the communication needed for a user to access a Service Provider's

resources by generating cryptographic credentials for the users to authenticate at different Service

Providers or by hosting different servers such as FIDO22 for secure authentication or User-

Managed Access (UMA) for user-based content management.

It also enables users to manage their own identity through modules such as Account Management

Module or Identity Management Module. Therefore, the user can enhance the security of their

account and restrict the Identity Consolidator's control over their identity by making use of the

UMA server. The user can set policies that have a higher priority over the identity attributes than

the level of assurance calculated by the Identity Consolidator when integrating the information

gathered from different Identity Providers about the user's identity.

The Identity Consolidator also enables the user to use the services of an AI-based assistant that

will assist the user in the management and disclosure of their identity. The AI-based assistant will

have the expertise to prevent the user from potential risks and allow them to take actions regarding

this matter and take steps to protect the user's privacy and security.

2 https://fidoalliance.org/fido2/

Deliverable D6.1 “Initial system design and prototyping”

14

Two different layers of security are added by using a Tor3 Network to mediate the communication

between the user and the Service Providers and blockchain to log user's interactions with the online

services such as Identity Consolidator or Service Providers.

3.1.2 User-Device

INCOGNITO uses the mobile device to realize the authentication of the user to a service. In the

first step, the user authenticates to the mobile device using a biometric factor. INCOGNITO

employs the FIDO2 authentication process that takes part between the local device and the online

service. In addition, it extends FIDO2 by: a) adding additional user-to-device biometric

authentication factors such as gait and face recognition b) integrating an OpenID Connect

authenticator with the FIDO2 authentication server to provide device-centric federated

authentication c) introducing cryptographic privacy-preserving attribute-based authentication to

the FIDO2 protocol, thus allowing users to cryptographically prove distinct ID attributes instead

of account ownership. Furthermore, INCOGNITO supports Attribute-Based Access Control

(ABAC) [2] cryptographic credentials to Identity Providers.

The user's cryptographic credentials, which are received from the Identity Consolidator and the

multiple IdPs, are stored in the cryptographic credentials storage that is allocated in the user's

device. Also, to enhance the security of the user's credentials, the cryptographic credentials storage

takes advantage of the user device's Trusted Execution Environment (TEE) capabilities. A

cryptographic interface is also included in the user device that communicates with the Idemix

protocol stack installed on the user's device. The Idemix credentials that are saved in the

Cryptographic Credential Storage can be released from these stacks.

The user device runs federated login protocols for authentication and authorization purposes

between the IdP and SPs (OpenID Connect4/OAuth 2.05). In addition, we integrate FIDO2 for

authentication between the user device and the Identity Provider, which supersede the standard

password paradigm.

The user can control his identity information with the identity and access control management

application, which is also included on the user device and communicates with the IDC. The

application enables the user to manage his identity attributes exposed to each Service Provider.

The user can also issue cryptographic credentials from his identity attributes directly to his device

and use them for ABAC. The consent management is also included in the application and ID

privacy functionality that enables the users to have knowledge and control over which Service

Provider knows which aspects of his identity.

There is also an AI-based Assistant on the user device, which communicates with the Identity

Consolidator to inform the user and guide him into properly managing their identity. The AI-based

Assistant notifies the user, for example, about the minimum identity attributes required to be

3 https://www.torproject.org
4 https://openid.net/connect/
5 https://oauth.net/2/

Deliverable D6.1 “Initial system design and prototyping”

15

revealed to the Service Providers in order to get access to its resources. Also, the AI-based

Assistant has the ability to inform the user about the risk of revealing specific identity attributes to

Service Providers, which in turn may enable the SPs to infer the complete identity of the user.

The device has an identity acquisition module that will allow the user to quickly and securely

acquire identity attributes from online identities (Facebook account, etc.), as well as his/her

physical ID Documents (e-Passports, eID, etc.) with the Near-Field Communication6 (NFC)

protocol. The user will have the option to store the acquired and verified identity attributes to the

IDC.

3.1.3 Identity Provider

In INCOGNITO, the Identity Provider is a trusted system that authenticates users on behalf of

another web resource, such as Service Providers. More specifically, Identity Providers are

responsible for transferring and securely maintaining user’s identity attributes. They incorporate

robust authentication mechanisms so that they can regulate user access. In addition, they are

responsible for issuing and verifying the user’s cryptographic credentials.

The Identity Providers rely on two key servers. The first one, FIDO 2.0 server that represents how

users register and authenticate at the Identity Providers. The second one is a QR7 authentication

server that allows the user to access a service from another device or browser if it is already using

that service on their user device. A QR Client existent on the user’s device will enable the user to

scan a QR code and send it to the QR Authentication server for verification. In this way, the

Identity Provider will be able to authenticate the user and give access to resources from a different

device than the one he scans the QR Code from.

3.1.4 Service Provider

The Service Provider is an entity that is responsible only for authorizing users to their service. All

the other crucial operations like authentication and verification of credentials are performed by

delegating them to the Identity Providers, which are trusted entities via Federated solutions like

OpenID Connect.

The Service Providers use the XACML-based Access Control Policy Reasoning Tool to define

access control policies regarding the users’ identity attributes required to gain access to their

services. These attributes are acquired from the Identity Consolidator, as users do not directly share

information regarding their identity with the Service Providers. The OpenID Connect protocol

combined with a cryptographic credentials stack, such as Idemix, is utilized to deliver the

attribute(s) needed by the Service provider to grant access to the user.

6 https://en.wikipedia.org/wiki/Near-field_communication
7 https://en.wikipedia.org/wiki/QR_code

Deliverable D6.1 “Initial system design and prototyping”

16

In addition, INCOGNITO will also incorporate a blockchain solution to boost its privacy and

security. The Service Providers will be part of that network, running an endpoint and participating

in the submission of transactions on the blockchain, while they will be held accountable for their

actions throughout the network’s lifecycle.

3.2 Software Components

The software modules developed in the project are hosted on GitLab and they can be accessed on:

https://incognitogit.ds.unipi.gr/incognito.

3.2.1 Identity Acquisition and Management

The Identity Acquisition and Integration platform are among the significant components of the

INCOGNITO architecture. This platform plays a significant role in most piloting activities and

uses cases of the INCOGNITO platform since it facilitates the seamless integration of the multiple

soft proofs of identities (both physical and online) of a user. More specifically, this platform is

responsible for horizontally binding the online identities of a user and vertically binding the

physical identities of a user to independently verifiable identity attributes.

The platform contains the Physical Identity Acquisition and Verification module, which is

responsible for securely acquiring and verifying all the user's identity information from their real-

world identity documents. The functionality of this module is exposed to the users through web

and mobile application interfaces, which allow us to leverage innovative, trusted-computing

enabled devices (e.g., mobile phones) to securely acquire all the physical characteristics and the

information included in the real-world identities of the users.

In addition, this module uses trusted software paths of commodity devices to securely capture,

through the device's camera device, pictures of the user and their physical identity documents.

Identity information of the users (i.e., location) used for verification of his identity attributes is

captured through the sensors available on commodity mobile devices. Upon acquiring all the users'

identity information, we use various verification algorithms to validate all the collected identity

information.

The identity verification process uses existing techniques (such as OCR) and peer-to-peer

(crowdsourcing) techniques. Automated verification is established on the acquired photos of the

users using face detection, face recognition, and Optical Character Recognition. Peer-to-peer

verification using crowdsourcing techniques takes place to verify that the information on the

acquired photos matches the users' declared identity information and physical characteristics. All

the verified identity information is then stored in the Identity Attributes Storage as independently

verifiable identity attributes. The Identity Acquisition and Verification module support additional

verification of the collected identity information through remote identity verification by trained

professional auditors leveraging the WebRTC protocol.

https://incognitogit.ds.unipi.gr/incognito

Deliverable D6.1 “Initial system design and prototyping”

17

We note that having enough information about a user, the Identity Acquisition and Verification

module is in place to infer other identity attributes by aggregating the collected identity

information of a user.

The horizontal binding of the various online identities of a user (e.g., Facebook, Google+, etc.) is

performed by the Online Identity Acquisition module. For each online account, an online

authentication and authorization process using federation authentication protocols (i.e., OpenID

Connect) is required so that the user gives explicit authorization to the Online Identity Acquisition

module to access and retrieve his account's personal information. Following the authentication

process, the acquisition of the attributes takes place, and the collected attributes are stored in the

Identity Attributes Storage.

At the same time, the Identity Integration and Normalization module, which runs as a background

service, is responsible for the normalization of all the collected identity information of the user

into independent verifiable distinct identity attributes and for assigning confidence to each

normalized attribute. In other words, it is responsible for aggregating and connecting the acquired

online and physical identity attributes of the user and inferring the veracity of the claimed identity

attributes via means of statistical data analysis techniques. The Identity Integration and

Normalization module is also responsible for assigning confidence scores for the integrity of the

attributes for labeling identity attributes based on their origin. In the end, all the normalized

attributes are stored in the Identity Attributes Storage of the IDC.

All the aforementioned modules interact with the Identity Attribute Storage using the Identity

Attributes Storage REST API. This API enables all the previously described modules to interact

with the Identity Attributes Storage for READ, WRITE, and UPDATE the user's identity

information. On the other hand, external entities outside the IDC and third parties can

communicate with the IDC and its Identity Attributes Storage.

Last, users will be able to authenticate and interact with the IDC and the web and mobile

applications of the Identity Acquisition and Integration platform various diverse authentication

mechanisms like a FIDO-enhanced OpenID Connect mechanism described in other deliverables

of INCOGNITO.

The Figure below depicts the architecture of the first of the initial version of the IDC which

includes all the modules that are part of the Identity Acquisition and Integration platform.

Deliverable D6.1 “Initial system design and prototyping”

18

Figure 3. Identity Acquisition and Integration Platform

3.2.2 Qualified Anonymity software components

• Idemix

Idemix is an attribute-based credential scheme which allows users to be authenticated in an

anonymous manner. The INCOGNITO project leverages the advantages of anonymous credentials

by using the IRMA implementation of Idemix.

IRMA implements the Idemix attribute-based credential scheme, allowing users to safely and

securely authenticate themselves as privacy-preserving as the situation permits. The main

advantages of using this scheme are:

- Unlinkability: consecutive verifications of the issued credentials for an attribute cannot be

traced back to the disclosing user

- Unforgeability: by using a blind signature scheme the authenticity of the issued credentials

is guaranteed

Deliverable D6.1 “Initial system design and prototyping”

19

- Immunity to replay attacks: nonces are used in the disclosure process to prevent

consecutive disclosure sessions to produce the same output; verifiers cannot deduce the

attribute from the proof of knowledge.

IRMA uses three main components:

- an Issuer of anonymous credentials, a corresponding Verifier component and the end entity

which is usually a User with the corresponding User Device. The Issuer component is

tasked with issuing anonymous credentials upon user requests. The issuance process will

be handled in a secure manner after the user is authenticated and the validity of the provided

credentials is proven.

- The issuance and verification of the anonymous credentials is based on a blind signature

scheme. As a result, each Issuer is in possession of a secret key which is not disclosed and

is used only in the issuance process. Each secret key has a corresponding public key which

can be used by the Verifiers to attest that the credential corresponding to the disclosed

attributes is valid and authentic. Due to the nature of the cryptographic scheme employed

it is impossible for the Verified to derive the attributes from the received proof of

knowledge.

- The User Device is responsible for securely storing the issued credentials. To achieve this

it can make use of secure encrypted storages and use secure cryptographic mechanisms

such as Trusted Execution Environments. It is also responsible for authenticating the user

prior to disclosure sessions and guarantying that the credentials are used only in disclosure

sessions.

IRMA support multiple session types:

- Issuance session: an end user may request the issuance of a new credentials which

corresponds to one or multiple user attributes. The Issuer uses the private key to sign the

issued credentials

- Disclosure session: an end user uses the received credential is order to generate a proof of

knowledge. This proof does not disclose the original attributes and can be used by a Verifier

in conjunction with the Issuer public key to prove the authenticity of the proof.

- Attribute-based signature session: similar to disclosure sessions they imply generating a

digital signature using the credentials. The signature can be validated at a later time to

prove the authenticity of the message and that the credentials were valid at signature time.

• OpenID Connect - FIDO 2.0

The federated identities used on the INCOGNITO platform for authentication purposes, heavily

rely on the OpenID Connect (OIDC) and FIDO technologies, which are deeply intertwined. The

FIDO2 Authentication and OIDC protocols complement each other, even though they have

different objectives. FIDO2 protocol aims in achieving authentication without requiring the

employment of traditional password methods or the transfer of attributes. FIDO2 does not require

the definition of user attributes, but rather provides the confirmation that a user’s claim is true,

without revealing the entirety of an identity. OIDC on the other hand, addresses the issue of

transmitting user attributes among network participants in a secure manner.

For the prototyping process, we have followed the design described in detail in D3.1. More

specifically, OIDC makes it possible for the SPs to delegate the authentication of end-users to the

IdCs, which also act as the OIDC Providers. Keycloak, the open-source Identity and Access

Management solution we utilize at the INCOGNITO platform, lies on the Identity Consolidator

Deliverable D6.1 “Initial system design and prototyping”

20

and acts as the OIDC provider. The FIDO2 technology on the other hand, gives the ability to end-

users to authenticate to their IdPs by making use of strong authenticators and cryptographic

protocols. The FIDO2 Client is utilized by the users on their devices, sends JSON messages with

the corresponding signature to the FIDO2 Server for authentication purposes. In turn, the FIDO2

Server residing on the IdC, validates the authenticity of a user. The federated authentication flow

followed in the prototype at this stage is very well summarized in the following diagram:

Figure 4. Federated authentication flow

• Trusted Execution Environment (TEE)

The incorporation of a trusted execution environment on a device allows for the deployment of

trusted application without making use of the normal computational resources. Moreover, trusted

applications executed on TEE, along with their resources, cannot be accessed by other non-trusted

entities. Thus, the trusted execution environment manages to achieve the following functionalities

when deployed in an information and communications technology system:

o Trusted applications can be executed in a confined manner, limiting the connection

among the processes.

o Application which are not inherently required to be executed in such a secure

environment, can perform their tasks in the same computing setting.

Deliverable D6.1 “Initial system design and prototyping”

21

In the context of the INCOGNITO platform, Open-TEE is currently the solution that’s ahead of

its other competitors and is being implemented. This trusted execution environment is closely

related to the anonymous credentials produced by Idemix. These credentials require the secure

cryptographic primitives offered by the TEE in order to issue the corresponding credentials, and

storage locally on the client. The Open-TEE solution will be integrated on the devices/components

that require the use of cryptographic processes and secure storage.

• TOR

TOR is a software used to provide online anonymity. It is based on the concept of Onion

Routing, a technique that encapsulates the content of a message in multiple layers of encryption.

In onion routing, instead of making socket connections directly to a responding machine,

initiating applications make connections through a sequence of machines called onion routers.

The onion routing network allows the connection between the initiator and responder to remain

anonymous.

 In INCOGNITO we use TOR to route the HTTP requests sent from the User Device to

the Identity Provider and Service Provider through the Tor Network. This way we are hiding the

user's IP Address, so no third-party application can link the user's IP to any personal information,

like location. In order to integrate TOR in our architecture, we are using a Tor Library for

Android and deploying it together with the rest of the mobile application.

3.2.3 Decentralized Identity Management

The Decentralized Identity Management module is being currently implemented. The Hyperledger

Fabric has been chosen among others as the development framework due to the advantages it

provides, which can be found in D2.3. The blockchain technology will give the ability to the

INCOGNITO platform, and more specifically the IdC/IdP, to manage identity attributes in a

distributed and privacy-preserving manner. The INCOGNITO blockchain structure serves as a

secure and immutable storage of “Identity Associations”, that is not susceptible to the “single point

of failure” threat and can be accessed only by entities that have been granted access. Along with

the user attributes, policies set from the user through Keycloak regarding which identity attributes

the user will share with specific service providers, will be logged.

The entities that may be required to access the blockchain ledger, will have to incorporate in their

implementation the Fabric Gateway. The Fabric Gateway is a core component of the Hyperledger

Fabric-based blockchain network and coordinates the actions required to submit transactions and

query ledger state on behalf of client applications. By using the Gateway, client applications only

need to connect to a single endpoint in the Fabric network.8 Using that connection, functions

created in the smart contract of the blockchain can be called in order to execute certain actions,

e.g. query an identity attribute from a user. The aforementioned are depicted in the following

figure, where we have included the IdC and an SP indicatively.

8 https://hyperledger.github.io/fabric-gateway/

Deliverable D6.1 “Initial system design and prototyping”

22

Figure 5. Decentralized Identity Management

3.2.4 Consent Management/User-Managed Access

INCOGNITO leverages a consent management module which allows users to obtain control over

the information they share. In order to authenticate in an anonymous manner, the user will disclose

relevant information in the form of proof of knowledge of attributes. These proofs can be verified

by the Service Providers at the corresponding Authorization Providers. The consent management

will help users identify and manage which attributes they wish to disclose.

To achieve the goals of the consent management module, UMA protocol will be used. UMA 2.0

is a federated authorization standard protocol built on top of OAuth2.0. It allows users to manage

their own resources and decide with which entities of the ecosystem they wish to share them. In

addition to that, the UMA 2.0 standards enable users to always feel in control of their attributes,

offers them the ability to make an independent decision and the choice to establish when it’s the

right time to share their attributes, making security the most important aspect to take into

consideration.

Keycloak acts as an Authorization Server and provides the necessary functionality for using the

UMA protocol for consent management. It consists of a set of administrative UIs and a RESTful

API designed to provide the necessary means for managing the protected resources of clients and

users. User-Managed Access specifications and leading standards such as OAuth2 are at the base

of Keycloak Authorization Services. The UMA REST API is part of the authorization services and

will be used by the consent management module. The Protection API of Keycloak, which is part

of the UMA REST APIs, exposes endpoints for the required actions needed in order to satisfy the

project’s needs.

In Keycloak, the term client refers to applications or services that are registered with the Keycloak

server in order to acquire security related functionalities. The term user refers to any individual

registered with Keycloak who can log into the system. The object being protected is referred to as

a resource in authorization policy terminology. A resource can belong to a client or to a user, in

Deliverable D6.1 “Initial system design and prototyping”

23

which case the corresponding entity is denoted as the resource owner. In INCOGNITO, the user

is the owner of his resources and can define access policies for accessing them which are referred

to as “permissions” in Keycloak terminology. A permission links the protected object to the

policies that must be evaluated to determine if access should be granted. Those permissions can

then be edited, removed or queried by using the Protection API of Keycloak.

3.2.5 UI/UX AI-based Assistant

The UI/UX AI-based assistant has two main parts, the front end and the back-end. The front end

lies on the user device, being the mobile or the PC through the web-browser. This front end is

getting user commands/questions and transfers them to the back-end that processes them and in

connection with the IDC module, it formulates the response to be sent back to the front end and

the user.

For the implementation of the UI/UX AI-based assistant back-end we have chosen the RASA

framework.

Rasa9 is a leading AI platform that allows personalizing user experience through the building of

virtual assistants (chatbots). Rasa provides infrastructure & tools necessary for building such

chatbots and comes with three main components:

- Rasa Open Source: it is the machine learning framework for automated text and voice-

based conversations. This is the core component and includes the Rasa server that handles

the conversations. Rasa Server has functionality to understand messages, hold

conversations, and connect to messaging channels and APIs. It can interact with many

different applications such as Facebook messenger, Slack, Telegram, Twilio, or with any

custom application via a REST channel.

- Rasa Action Server: it runs custom actions for a Rasa conversational assistant.

Implementing custom actions gives the chatbot the ability to perform complex tasks such

as transforming user input, querying external services via REST calls and returning any

kind of payload back to user.

- Rasa X is a graphical tool that helps us develop chatbots able to handle as many story paths

as possible. This is done using Conversation-Driven Development (CDD), the process of

listening to actual users and using those insights to improve the AI assistant. Rasa X allows

to share a trained assistant to many users-testers and collects the interactions so the

developers get valuable feedback that helps to debug and improve the assistant.

-

9 https://rasa.com/

Deliverable D6.1 “Initial system design and prototyping”

24

Figure 6. Rasa conversational assistant

For the implementation of the frontend, a simple, dialog/chat-like interface is being developed

with Kotlin10. We are considering continuing to use Kotlin for the rest of the AI-based assistant

features that are compatible with Java. In terms of integration, the connection between the front

end and the back-end and the connection to the IDC will be realized through REST APIs to ensure

security and extensibility.

The details of the UI/UX AI-based assistant module, its design and technology can be found in the

deliverable D5.1.

10 https://developer.android.com/kotlin

Deliverable D6.1 “Initial system design and prototyping”

25

4 The Integration Platform

This chapter gives an overview of the tools and technologies we are using in INCOGNITO, from

collaborative tools to software integration and deployment tools.

4.1 Collaborative tools

In order to add traceability and visibility to the entire software development process, we will use

dedicated tools to collaborate on task creation, source code management, and document sharing.

Good organization and transparency are vital in INCOGNITO, due to the international nature of

the development team and the continuously new arriving secondees who join the team.

4.1.1 Phabricator

During the software development process, we decided to use Phabricator to collaborate on tasks.

Phabricator is an open-source platform that offers project management features, allowing team

members to host Git repositories, share documents and other information like wiki pages or details

about events.

Phabricator allows us to organize tasks in a hierarchical way, set deadlines for them, add

commentaries and set priorities. Moreover, we are tracking progress in two ways: by using Kanban

boards and by adding comments on the task specifying its status. Kanban is a software

development method to manage work across systems. The main goal of Kanban boards is to

provide a visual representation of the progress, helping the team to prioritize activities in a more

efficient way. A classic Kanban board is usually divided in three columns: To Do, In Progress and

Done like shown in Figure 7.

Figure 7. Example of organizing task on the board

Deliverable D6.1 “Initial system design and prototyping”

26

4.1.2 GitLab

One of the critical components in a software development project is a version control software

with a friendly User Interface. As multiple developers across different countries will contribute to

the codebase, it’s essential to keep everything updated in a centralized repository. A platform like

GitLab offers transparency and traceability, contributes to knowledge sharing and real-time

collaboration.

In INCOGNITO we have multiple repositories for different modules of the application.

GitLab has key functionalities for uploading new code and updating the existing codebase that are

easily accessible in the interface for all developers. Each repository has a main branch called

Master. When working on a sub-task, the developer creates a new branch and applies and then

publishes the changes on it. The next step is a request to add the code to the main branch which

implies an operation called "creating a pull request". The pull request must be approved by the

assigned developer/s. Once approved, the two branches are merged together and the newly added

code can be found in the Master branch.

Figure 8. Creating a new branch from the Master branch

4.1.3 Git

Git11 is an open-source version control system for code management. It is designed to make and

track local file changes and share them with a remote repository where everyone can access a

stable version of the code.

With Git, the developer can create an environment for the local files on their computer called

"repository". Within this repository, files can be added, modified and deleted while maintaining

evidence of every change. This is an important feature because the developer can see a history of

changes that have been made and revert them to a previous version if needed. Moreover, the

developer can sync their local repository with a remote one (in our case GitLab) where the team

keeps a centralized stable version of the code.

11 Git, https://ro.wikipedia.org/wiki/Git

https://ro.wikipedia.org/wiki/Git

Deliverable D6.1 “Initial system design and prototyping”

27

Figure 9. Git Local and Remote Repositories workflow

4.1.4 Office365 – One Drive

One of the significant parts of this project revolves around documents. From deliverables to reports

and documents for knowledge sharing, the team of researchers needs a software to create and edit

documents. We chose Office365 provided by Microsoft. This is a cloud-based solution where team

members can easily collaborate on writing documents (Word, Excel, etc.), track changes and edit

in real time, as long as they have an internet connection. These key functionalities of Office365

are valuable and helpful for our team of researchers based in multiple locations.

4.2 Continuous Integration and Continuous Deployment tools

Although INCOGNITO does not strictly follow the CI/CD philosophy because it does not use all

the usual environments (development, testing, staging and production) it uses a replica of the

production environment where every new functionality has to prove to be stable in order to be

deployed. As a result, a workflow designed to integrate and deploy new features continuously is

needed. There are a few notable tools that became a standard for every efficient CI/CD process

over the years which will be addressed in this chapter.

4.2.1 Jenkins

Jenkins12 is a service used to perform continuous integration and build automation by configuring

it to execute a predefined list of steps.

12 Jenkins, https://www.jenkins.io/

https://www.jenkins.io/

Deliverable D6.1 “Initial system design and prototyping”

28

This open-source tool may help the team discover errors in the early stages of the development by

continuously testing the builds.

Among the advantages of using Jenkins are:

• Developers don't have to synchronize the time of committing their code because it is tested

and built every time a developer applies a new change. Therefore, new features can be

proposed multiple times during a day.

• It is easier to detect whose change in the code generated any potential error since the code

is built after each commit of a single developer.

• More time is saved, and new features are delivered faster as a result of the build and test

process is automated and no longer manual

On our integration server, Jenkins runs on port 8081 and can be accessed at: http://incognito-

dev.certsign.ro:8081

When a repository is ready on GitLab, it can be incorporated into a Continuous Integration

pipeline. For that, a connection between the desired repository and Jenkins must be established.

These are the steps to establish a connection between Jenkins and a repository hosted on GitLab:

- Generate an API Token from the GitLab interface with your user's credentials

- Add the API Token on Jenkins credentials section and test connection (It should return a

Successful message)

- Generate a SSH key pair, add the public key on GitLab and the private key on Jenkins

- Create a project on Jenkins, providing the corresponding GitLab repository link, in order

to trigger a build every time a change is pushed to GitLab

4.2.2 Docker

Docker13 is a containerization platform that packages an application and all its dependencies

together inside a container. This open-source tool is used to deploy applications inside software

containers and solves the "works on my machine" problem when collaborating with a team of

developers by allowing everyone to run the code in an identical environment. This issue is of

interest and great importance, considering that the group of researchers in INCOGNITO is

geographically distributed across Europe. Therefore, all have different computers and working

stations.

A few notable Docker concepts are:

13 Docker, https://www.docker.com/

http://incognito-dev.certsign.ro:8081/
http://incognito-dev.certsign.ro:8081/
https://www.docker.com/

Deliverable D6.1 “Initial system design and prototyping”

29

DOCKERFILE - A Dockerfile is a text document that contains a series of commands to be run by

the user in order to assemble an image

IMAGE – A Docker image is a template file that contains the source code, libraries, dependencies

required to run an application.

CONTAINER – A container is a running image. They package applications with all the necessary

dependencies and configurations. Containers are portable, which means they can be easily shared

between developers. They are kept in a repository that can be private or public (Example: Docker

Hub is the public repository for Docker).

DOCKER COMPOSE – Docker Compose14 is used to deploy multi-container applications. The

configuration is written in a Yaml file that contains details about the containers and services used

to run the application

Figure 10. Docker Container components

A typical Docker workflow to create an image when having the application ready and running it

as a container:

Figure 11. Docker workflow

14 https://www.educative.io/blog/docker-compose-tutorial

Deliverable D6.1 “Initial system design and prototyping”

30

1. Create the Dockerfile

2. Build the file:

docker build <file_name>

3. Check the successful creation of the image from the previous step by listing all the

available images:

docker images

4. Create a container based on the image:

docker run <image_id>

5. Check the created containers available:

docker ps

4.2.3 Kubernetes

Kubernetes is a container management tool used to automate the deployment and management of

containers. In INCOGNITO, Kubernetes is used to orchestrate the Docker containers in a

lightweight manner. Kubernetes proves itself to be especially useful when many containers are

constituting a modular application that requires to be connected, integrated, and updated. One of

the major advantages of Kubernetes over Docker is the self-healing capability of the containers

(deployed on Pods) in case of failure.

In a classic Kubernetes setup, there are multiple master and worker nodes on separate machines.

Since INCOGNITO does not use multiple servers for deployment (only one integration server

described in chapter 4.3), a Kubernetes implementation named Minikube15 is used. Minikube is a

one node cluster, where the master and worker processes are on the same machine.

There are a few key concepts in a Kubernetes architecture16:

POD – A pod is the smallest unit in Kubernetes. It is a group of one or more application containers

(such as Docker) running a module of the application: the database, the web application etc. Pods

run on the nodes and have their own IP Address. The IP Address of a pod is non-persistent.

15 Minikube, https://minikube.sigs.k8s.io/docs/

16 Kubernetes objects, https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

https://minikube.sigs.k8s.io/docs/
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

Deliverable D6.1 “Initial system design and prototyping”

31

DEPLOYMENT – A deployment is a set of multiple, identical pods that run multiple replicas of

the application. A Deployment configuration declares the expected state of a Pod. It works in

conjunction with Replica Sets to ensure that the expected number of instances of a given pod is

available at any time in the cluster, including when scaling up or down and during updates.

Deployment is a resource to deploy stateless applications.

Figure 12. Kubernetes Deployment functionality

Deployments ensure that at least 75% of pods are UP while updating an image of a container. It

does not kill the pods until enough new ones have been created.

Deployments can be scaled:

Example: kubectl scale <name-of-deployment> --replicas = 10

STATEFUL SET - StatefulSet is a resource used to manage stateful applications. Stateful

applications are usually databases and apps that need to store data. In a StatefulSet configuration

each replica of a pod will have its own state and will be using its own volume. This means that

pods are not interchangeable, which is a key feature when working with data in order to avoid

data inconsistency. It is mandatory to have a service declared in the configuration of the

StatefulSet. The service creates the necessary endpoints to expose the pods with DNS names

inside the cluster. StatefulSets can be scaled:

Example: kubectl scale <name-of-statefulset> --replicas = 5

Deliverable D6.1 “Initial system design and prototyping”

32

REPLICA SET - A ReplicaSet is a resource that runs multiple instances of a Pod and assures

that the desired number of pods are running at any time. When a ReplicaSet needs to create new

pods, it uses the configuration of the pod that has been specified as a template. Compared to the

Deployment resource, ReplicaSets don’t allow declarative updates to pods. According to the

official documentation, depending on the scenario, Deployments are usually preferred since they

operate on a higher-level17.

SERVICE - A Service exposes a set of pods to other pods within the cluster, or to the outside

world. It acts as a permanent IP Address that can be assigned to a pod, because the lifecycle of a

pod and a service are not connected.

VOLUMES – A volume is a way to store data between pod restarts. The storage has to follow

two general rules: it must be available on all nodes and it must survive even if the cluster

crushes. Volumes in Kubernetes can be local (on the physical server) or remote (in the cloud).

Steps to deploy a module of the application with Minikube on the server:

 Start the Minikube cluster with one node:

 minikube start –driver=Docker

It is also the possible to start minikube with multiple nodes:

 minikube start --nodes <number-of-nodes>

 Eg: minikube start --nodes 2

Check the status of minikube cluster:

minikube status

Create the deployment by specifying the Yaml file containing the configuration:

kubectl create -f <file-name.yaml>

Check the status of the Deployments or StatefulSets:

kubectl get deployments
Kubectl get statefulsets

17 https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/

https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/

Deliverable D6.1 “Initial system design and prototyping”

33

See details of the deployment:

kubectl describe deployment <name-of-deployment>

The number of pods will be dictated by the 'replicas' field in the Yaml file. To see the pods and

their status:

 kubectl get pods

For troubleshooting, see logs about each container in the deployment:

 kubectl logs <name-of-pod> <name-of-container>

The desired output after a successful deployment is presenting the status "running" when

checking the state of a pod:

kubectl get pods

NAME READY STATUS RESTARTS
keycloak-mysql-69cdb8bbff-9tcxq 1/1 Running 0

keycloak-mysql-69cdb8bbff-bwpsm 1/1 Running 0

It is useful to mention that there are ways to migrate from a docker-compose configuration to a

Kubernetes configuration. One of these tools is an open-source software called "kompose"18.

This is a solution to help developers who are more familiar with Docker concepts to migrate to

Kubernetes deployments. The tool is available on all operating systems and it translates the

"Docker-compose.yaml" file to one or multiple Yaml files corresponding to the Kubernetes

objects necessary for that specific application.

Compared to ReCRED (which uses only Docker to deploy the software modules), this new way

of deploying the application with Kubernetes assures availability of the containers by the "self-

healing" capacity of the Pods. If a component of the application deployed on a Pod goes down,

Kubernetes will automatically re-deploy it. There are three states a Container can have in a

deployment: Waiting, Running and Terminated. The Waiting state corresponds to when the

container is created or the image is being pulled. The Running state indicates that the container

inside that pod is working accordingly with no issues. The Terminated state is for containers that

fail or have completed their execution. On the other hand, pods have phases based on which

18

Deliverable D6.1 “Initial system design and prototyping”

34

Kubernetes will perform liveliness and readiness probes in order to "heal" them if necessary. These

phases are:

- Pending – the pod was created but it is not running

- Running – the pods is running the container successfully

- Succeeded – the pod has successfully completed the container lifecycle

- Failed – minimum one container failed or all containers terminated

- Unknown

Based on these concepts, Kubernetes makes sure that the defined state of a cluster and the actual

state are in-sync.

On this initial version of the integration platform, we have the following components deployed:

Keycloak with FIDO2 and Rasa.

The pods in the Keycloak deployment can be listed and accessed by the following command:

kubectl get pods

There are 3 pods for the Mysql database component:

NAME READY STATUS RESTARTS AGE

keycloak-mysql-0 1/1 Running 0 8d

keycloak-mysql-1 1/1 Running 0 8d

keycloak-mysql-2 1/1 Running 0 8d

There are 2 pods for the Keycloak containers:

NAME READY STATUS RESTARTS AGE
incognito-keycloak-646dd8f458-lwh5n 1/1 Running 0 9s

incognito-keycloak-646dd8f458-xbvh6 1/1 Running 0 8s

The MySQL component is deployed as a StatefulSet, therefore we have a headless service

associated with it. The service can be listed with the command "kubectl get services"

and it displays the following service:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

keycloak-mysql ClusterIP None <none> 3306/TCP 8d

All the components of the Rasa deployment are organized in a namespace called "rasa" and can be

listed by "kubectl get all –n rasa" and the output presents all the resources shown in

Figures 13, 14, 15, 16 and 17.

Deliverable D6.1 “Initial system design and prototyping”

35

Figure 13. The pods in Rasa Deployment

Figure 14. The services in Rasa Deployment

Figure 15. The deployments in Rasa Deployment

Figure 16. ReplicaSets in Rasa Deployment

Deliverable D6.1 “Initial system design and prototyping”

36

Figure 17. The StatefulSets in Rasa Deployment

4.3 Hardware platform

Each partner has their own infrastructure (personal computers or servers) for developing software

and testing different technologies. However, a common server was needed in order to integrate all

components and sub-modules together.

The hardware component is where the application will run, be deployed and hosted. It is also the

place where some of the CI/CD tools will run.

The server is based on Linux with a CentOS 8 distribution and it is owned by CertSIGN.

There are some minimum specifications for this server in order to set up a similar environment

dedicated for deploying and hosting the application. The server has 8 CPUs, Intel(R) Core(TM)

i7-4770 CPU @ 3.40GHz and a total usable RAM memory of 16 GB.

Each developer in INCOGNITO has an individual account on the server with a corresponding

username and they access it through SSH either by having a SSH key pair or by password.

On the integration server we have the following tools installed and configured:

Docker (version 20.10.6) – the software used to create, deploy and run applications by using

containers described in Chapter 4.2.2

Jenkins (version 2.288) – the continuous integration and build automation tool described in

Chapter 4.2.1

Minikube (version v1.18.1) – the one node cluster described in Chapter 4.2.3

Kubectl (version v1.20.5) - a command line tool used to interact with any type of Kubernetes

cluster setup: Minikube or Cloud.

Deliverable D6.1 “Initial system design and prototyping”

37

5 Conclusions

Deliverable D6.1 "Initial System Design and Prototyping" is the first deliverable of Work

Package 6. In this deliverable we covered information about the software modules, the hardware

infrastructure, the CI/CD tools and the software development methodology and practices we

used in order to collaborate successfully as a team.

The work of D6.1 serves as a foundation for the next deliverable, D6.2 "Final Integrated

System". The integration process is continuous as more software modules will be ready for

deployment, but the initial set up of the platform together with all the tools installed and

configured on it represent the core for any future activity in Work Package 6.

Deliverable D6.1 “Initial system design and prototyping”

38

6 References

[1] S. Sharma, D. Sarkar, D. Gupta , “Agile Methodology and Principles: A conceptual study”, available at:

https://www.researchgate.net/publication/267706023_Agile_Processes_and_Methodologies_A_Conceptual_Study

[2] E. Yuan and J. Tong, “Attributed based access control (ABAC) for Web services,” in IEEE International

Conference on Web Services (ICWS’05), Jul. 2005, p. 569, doi: 10.1109/ICWS.2005.25.

https://www.researchgate.net/publication/267706023_Agile_Processes_and_Methodologies_A_Conceptual_Study

