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Abstract: TrustZone-based Trusted Execution Environments (TEEs) have been utilized extensively for
the implementation of security-oriented solutions for several smart intra and inter-connected devices.
Although TEEs have been promoted as the starting point for establishing a device root of trust, a
number of published attacks against the most broadly utilized TEE implementations request a second
view on their security. The aim of this research is to provide an analytical and educational exploration
of TrustZone-based TEE vulnerabilities with the goal of pinpointing design and implementation
flaws. To this end, we provide a taxonomy of TrustZone attacks, analyze them, and more importantly
derive a set of critical observations regarding their nature. We perform a critical appraisal of the
vulnerabilities to shed light on their underlying causes and we deduce that their manifestation is the
joint effect of several parameters that lead to this situation. The most important ones are the closed
implementations, the lack of security mechanisms, the shared resource architecture, and the absence
of tools to audit trusted applications. Finally, given the severity of the identified issues, we propose
possible improvements that could be adopted by TEE implementers to remedy and improve the
security posture of TrustZone and future research directions.

Keywords: TrustZone; Trusted Execution Environments; vulnerabilities; exploitation; side channel
attacks; IoT

1. Introduction

Due to the emergence and adaptation of smart connected devices as a platform for
interaction with an ever-expanding number of digital services and systems, security has
emerged as a major design goal for these smart connected devices. The ability to connect,
manage, and control a device from anywhere and at any time leads such devices to generate,
process, and exchange vast amounts of security-critical and privacy-sensitive data, turning
them into attractive cyberattack targets. The strong intra and inter-connectivity of smart
connected devices requires a holistic, end-to-end security approach, addressing security
and privacy risks at all levels.

Security by isolation is a well-established strategy for achieving security goals such as
data confidentiality, integrity, and availability. Several software-based approaches such
as microkernels, sandboxes, and virtualizations have been used, but these methods fail in
providing the desired security level [1,2]. Smart connected devices must be fortified with
new security-oriented technologies that guarantee security from the outset.

Among existing security-oriented technologies, TrustZone is gaining particular atten-
tion due to the massive presence of ARM processors in the embedded market [3]. TrustZone
technology is an implementation of a Trusted Execution Environment (TEE), which is a
hardware and software based isolated, secure container of state and data that functions in
parallel to the main OS of the system. In TrustZone-based TEEs, security-sensitive applica-
tions and sensitive data can be offloaded with the purpose of enhancing their protection
and assurance of their integrity and confidentiality. The need for a TEE is derived by the
realization that the standard operating system of the platform is incapable of safeguarding
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the integrity of the applications and their data. The design goal of TEE is to be able to
host a wide variety of security-sensitive applications and to be able to protect -mainly by
hardware driven isolation- their own internal state’s integrity as also that of the serving
applications, from malicious modification.

ARM TrustZone have been researched and proposed as providers of security sensitive
solutions in various application domains of smart connected devices including sensors [4],
Industry 4.0 and IoTs [5], Vehicular communications [6], drones [7] and wearables [8].
However, an ever-expanding number of discovered vulnerabilities and developed attacks
against the most widely used TEE implementations, poses a question on the ability of cur-
rent designs to achieve the standing of the most secure element on the platform, as they are
been heavily promoted of from the side of both platform designers and integrators [9–14].

This paper illuminates this reality and projects the requirement for a more extensive
security awareness from the perspective of their design and implementation as well. More
specifically, first we provide essential information about the TrustZone security extensions,
TEE implementations and types of services they host. Next, we elaborate on the discovered
vulnerabilities and related attacks using a taxonomy that classifies them into three main
categories: (a) software, (b) architectural, and (c) side channel attacks. The presentation of
the attacks is comprehensive providing a set of critical observations that carry out the most
important outcomes of each attack for pedagogical purposes. We pinpoint that an attacker
with the ability to execute code in the context of the secure world can fully compromise
the system, while also have access to secrets stored within the secure world. Furthermore,
an attacker that has kernel rights within TrustZone can manipulate resources from other
trusted applications. We also provide generic attack paths to visually demonstrate all
possible vectors that attackers can exploit to compromise the security of TrustZone. Next,
we perform a critical appraisal of the discovered vulnerabilities to shed light on the roots of
these subtle security flaws. Finally, we provide important security guidelines and solutions
both for application developers and TEE implementors to remedy and improve the overall
security posture of TrustZone. In summary, this work provides the following contributions:

1. Proposes a taxonomy of the currently known public attacks against TEE implementa-
tions and conducts an in-depth analysis of them.

2. Provides high-level attack paths to describe how vulnerabilities in different architec-
tural components can result in partial or complete takeover of the TrustZone.

3. Provides insights into the possible reasons behind the security weaknesses.
4. Proposes guidelines that developers and security practitioners should follow in order

to enhance the security status of TrustZone and suggests future research directions.
5. Draws attention in a very relevant area of research since trusted computing is one

of the key factors for applying security and trust in next generation IoT and sensor
networks.

There are various works that investigate TEEs and their provided security guarantees,
compare their capabilities with other related technologies and analyze their shortcom-
ings [15–21]. In [15] researchers developed a theoretical model for TEEs, analyze its core
components and propose a more precise definition of it. Although they are referencing
some of the public attacks on TEEs, they do not analyze the impact of them nor the reasons
that may lead to their existence. In [16] Arfaoui et al. provide a view of the various existing
TEE technologies according to GlobalPlatform standards. [17] Presents a survey of trust
computing in mobile devices. Moreover, in [18] there is a comparative security analysis
of the TrustZone and the SGX technologies while in [19–21] the researchers provide a
comprehensive analysis of the TrustZone technology in general with no emphasis on the
attacks against it. The focus of the above papers is different from our approach, as none of
the three exposes the degree of vulnerability and the importance of the various TrustZone-
based TEE solutions used in market deployed devices, while they fail to pinpoint common
design flaws that lead to these vulnerabilities. Finally, concurrent to our work, Cerdeira
et al. [22] presented and provided a comprehensive taxonomy of TrustZone-based TEE
vulnerabilities. The results of this paper are complementary to our research and analysis.
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The rest of this paper unfolds as follows: Section 2 provides background information
for the ARM TrustZone technology to facilitate better understating of the presented no-
tions. Section 3 provides an analytical and educational analysis of TrustZone-based TEE
vulnerabilities and related attacks. Section 4 highlights important observations related to
the roots of the discovered vulnerabilities and discusses possible solutions to the identified
issues as well as future research directions. Finally, Section 5 includes the conclusions.

2. Background
2.1. ARM TrustZone and Trusted Execution Environments Architecture

The use of a secure processor environment can be traced back to 2003 in Texas Instru-
ments OMAP processors [23] which were deployed on Nokia phones (particularly OMAP
161x and 73x processors). Later in 2015, Texas Instruments branded the technology as
M-Shield [24]. The ARM TrustZone hardware security extensions were introduced into
Cortex-A processors in 2004 [25]. The first standardization attempt of TEEs was described
publicly by Open Mobile Terminal Platform (OMTP) in its specification for Advanced
Trusted Environment in 2009. One year later in 2010, the center of TEE standardization
became another industry forum, GlobalPlatform, which published its first TEE standard,
TEE client API 1.0 that defines the communication between trusted applications which are
executed in TEE, and applications executed by the main operating system.

The ARM TrustZone has been introduced for the Cortex-A processors (which is the
focus of this paper), while more recently it has been extended to the new generation of
ARM microcontrollers called Cortex-M designed for low-cost and energy efficient devices.
It is worth mentioning that there are similarities and important differences in the imple-
mentation of TrustZone between the two processor families [26]. The most deployed
TrustZone-based TEEs in the majority of devices currently in the market are Trustsonic’s
Kinibi (or <t-base/mobicore) [27] and Qualcomm’s QSEE [28]. Other industrial implemen-
tations consist of Huawei’s HiSilicon TEE [29], SecuriTEE of Solacia [30], Microsoft-Nokia’s
implementation named ObC [31], SierraTEE [32] and Google’s Trusty TEE [33]. All of the
above with the exception of ObC (which was discontinued in 2013) and Trusty are closed
source systems with little public knowledge available about the internals of their design
and their code base. Except of the industrial solutions, academic implementations exist also.
Genode TEE of Genode Labs [34], OP-TEE [35], OpenTEE of Intel Collaborative Research
Institute for Secure Computing [36], Andix OS of TU Graz University of Technology [15],
ARMithril of North Carolina State University [15], SafeG of Nagoya University [37], ViMo-
Express defined by Electronics and Telecommunication Research Institute [38], and TLR of
Microsoft Research [39] are the most commonly referenced academic TEEs.

As a feature, TrustZone can been seen as a special kind of hardware-supported virtual-
ization of CPU state, memory, interrupt signals and I/O data, with the purpose of isolation.
This virtualization technology enables each physical CPU core to provide an abstraction of
two virtual ones, orthogonally dividing the process state in two logical realms, or worlds
as they are named: The normal world of the Rich Execution Environment (REE) and the
secure world of TEE. In this way it allows a TEE to run in parallel and isolated from the
main REE where the standard OS (Android, iOS, etc.) and standard user applications
exist. In the TEE, a security-oriented OS is operating and serves a number of security
sensitive applications called trustlets or Trusted Applications (TAs), providing through
them services to the normal world OS and to the platform. Each side of the platform has a
different view of memory, interrupts and I/O hardware with the secure world being the
most privileged. A third element, the monitor mode, acts as a gatekeeper between the two
worlds and manages switching between the two and the transitions and transfers of state
in a secure way [15].

World switching between the two execution environments is facilitated via the Secure
Monitor Call (SMC) instruction. In normal operation the non-secure operating system
processes tasks in the standard way. When a non-privileged REE process requires services of
a trusted application running in the secure execution environment, it requests an execution
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state transfer to the privileged non-secure kernel. The non-secure kernel through a device
driver, by use of the SMC instruction, calls the secure monitor to undertake the switch to
the secure world [40,41]. Apart from the software SMC call, a subset of hardware exception
mechanisms containing the IRQs, FIQs, external data abort and external prefetch abort are
able to modify the current state of execution and cause a world switch.

Furthermore, the ARMv8 architecture follows an exception model that is divided
in four different privilege levels that follows the classic software segregation between
application and operating system/kernel privileges [42]. In this way, it separates the system
into relatively privileged abstractions. Each privilege level is denoted by its associated
Exception Level (EL0, EL1, EL2, EL3) with EL0 being the lowest privileged while EL3 the
highest. This model propagates throughout the normal and the secure world, affecting their
applications and operating systems. More specifically, the unprivileged level of execution
EL0 is where the user space applications reside like trusted and normal world applications,
while the normal world and secure world operating systems and their kernels belong to
EL1. The various hypervisors used for virtualization of the normal world or the secure
world EL1 operating systems [43,44] reside in EL2 and can essentially allow the parallel
execution of multiple EL1 operating systems but they cannot manage or manipulate the
secure state of the system; that is, a transition between the secure and the normal world.
This privilege is only allowed to the final and most privileged EL3 where the secure monitor
(trusted firmware) is the only entity allowed in this exception level.

The secure monitor typically provides a basic set of functionalities [45] that include:
a Power State Coordination Interface (PSCI) for coordinated power management [46], a
Trusted Board Boot Requirements CLIENT (TBBR-CLIENT) for the trusted boot process
and the isolation between the normal and secure world [47], an SMC Calling Convention
for SMC handling [48], a System Control and Management Interface (SCMI) for coordinated
system control and management tasks [49] and a Software Delegated Exception Interface
(SDEI) for registering and servicing system events [50]. Finally, EL0-EL2 are separated in
two states, secure and non-secure which are usually denoted with NS.EL [0–2] and S.EL
[0–2] and they are used to provide a distinction between the normal and the secure world;
the EL3 is always in the secure state. The secure state of the processor is managed by the
SCR_EL3.NS bit. A depiction of this exception level architecture can be found in Figure 1.
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Figure 1. ARMv8 exception level architecture.

In Figure 2, there is a demonstration of how the two worlds are divided between
them and their respective kernels. Each world includes its user-space and kernel-space
for internal operations with the secure monitor being a part of the secure world. The
communication between the two worlds can be implementation-dependent with three
options being the most common which can be seen in Figure 2: (C1), a library is provided
which directly communicates with the underlying TEE driver, (C2) the user application
directly communicates with the TEE driver and (C3) there is a running daemon responsible
for managing and forwarding requests to the TEE driver. Regardless of the chosen normal
world implementation, the TEE driver will undergo any required procedures in order to
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create an SMC system call, which in turn hand over the execution to the secure monitor.
Then, the secure monitor will assess the SMC and pass the execution to the trusted world
kernel that will finally call the appropriate trusted application. It should be noted here that
the two worlds, in order to communicate properly, have methods for sharing data either
through small variables or shared memory objects.
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The sharing of memory between the secure and the normal world is implemented
with two different SMC calls: the fast call and the yield call (defined in the ARM trusted
firmware reference implementation as SMC_TYPE_FAST and SMC_TYPE_YIELD) [51].
The fast call provides a fast register-based information exchange, where only up to four
variables can be used to transfer limited data between the two worlds. These variables
can be used by both the normal and the secure world to transfer function parameters,
operational results, and any other required data. On the other hand, the yield call allocates
a memory location of the normal world to be shared with the secure world, this call is
useful for scenarios where large amounts of data need to be transferred or when there is a
need for synchronous trusted applications like DRM protected video streaming.

Additionally, TrustZone facilitates two components for memory management and
protection, the TrustZone Memory Adapter (TZMA) and the TrustZone Address Space Con-
troller (TZASC), respectively. These components implement protection schemes through
static partitioning of the on-chip memory (TZMA) and through dynamic partitioning of
the off-chip memory. The memory management units are configured by early bootloaders
to only allow specific execution environments to access specific memory locations. If the
normal world environment attempts to read or write the memory that is configured in
a memory controller for the TrustZone kernel, the CPU will abort and, depending on
configuration, reboot the device due to the violation.

On top of these TrustZone features, ARM also implements an access permission
scheme that defines whether memory access is allowed or not, based on special permission
characteristics assigned to each memory page. For instance, a read and execute-only page
(which usually are code pages) cannot be modified, while other memory regions that
will hold dynamic data should be assigned writeable permissions too. This is enforced
through an access control mechanism that utilizes the Domain Access Control Register
or DACR. The MMU checks if the bits corresponding to the given memory region in the
DACR register (of the ARM specification) are set; If so, the access is allowed. The DACR
is a 32-bit register, which specifies the access properties of 16 memory domains (2 bits for
each domain, see Figure 3). The possible values are [52]:
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• 00: Access is denied. Any access generates a domain fault.
• 01: Access is granted depending on the permissions of the actor. (Read/Write/Execute)
• 10: Reserved. By default, access is denied.
• 11: Access is unconditionally granted.
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Thus, if the value of the DACR register bits of the corresponding memory domain
are set to 11, the MMU will enable access to any memory address of that domain for both
writing and reading without generating any faults.

For bus management, two interfaces exist: the advanced extensible Interface (AXI)
and the Advanced Peripheral Bus (APB), both acting under the AMBA3 [53] specifications.
The first implements the bus interface for the main SoC level system and the second is
a low bandwidth simple peripheral bus interface, which is attached to the system using
an AXI-to-APB bridge. The primary interface has the capability –through an extended
signaling system and the insertion of a 33rd flag bit named NS-bit- to separate peripherals
based on a secure or normal world division schema. The APB bus has no capabilities of this
nature and the responsibility of managing security must be handled by the aforementioned
intermediate bridge interconnect. Additionally, the system can have both secure and non-
secure hardware peripherals that respective secure and non-secure device drivers control,
from each mode independently through the provided buses [40].

2.2. GlobalPlatform Specification & Protection Profile

Regarding standardization activities, GlobalPlatform is the main organization creating
and publishing specifications for the TEE technology. Initially focusing on TEE system
architecture specifications and on standardization of the interface between the TEE and
the REE (client API), a specification for the interface between the TEE applications and the
Secure OS (internal API) was later provided. They have also published a TEE protection
profile that targets threats to the TEE assets that arise during the end-usage phase and can
be achieved by software means [26]. Most ARM TrustZone-based TEEs which are available
in commodity devices, strictly conform to these standards.

In the protection profile specification of GlobalPlatform, multiple attributes and re-
quirements are defined that provide the scope of the security protection that a TEE should
provide. That is what security guarantees are mandatory for TEE implementors. This
document presents: (i) the target of evaluation for the main security features and intended
uses of a TEE device, (ii) the conformity of the document to common criteria, (iii) the
security problem definition, (iv) the security objectives and (v) the security requirements.
Furthermore, in the appendix of the document there is a description of potential attacks to
TEEs with varying profiles and scenarios that also include hardware attacks (side channel
attacks and fault injection attacks) which the TEE should be able to defend against to
some extent.

The part of the document that we focused on is the security objectives which will
allow us to assess each attack by investigating which security objective is violated through
it. In the following list we shortly describe each mandatory TEE objective and in how
many attacks we found a violation of it. In Section 3.4 which is analyzed after the attacks
presentation in Section 3.4 we will showcase exactly which of those objectives is violated
by each attack.

• O.CA_TA_IDENTIFICATION: Protection for the identity of each trusted application
from being used from other trusted applications. Also, assurance for the distinction of
normal world applications and trusted applications. (Violations: 0)
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• O.KEYS_USAGE: Enforcement of defined usage restrictions to cryptographic keys.
(Violations: 0)

• O.TEE_ID: Statistical uniqueness and protection of the TEE identifier generated by the
TEE. (Violations: 0)

• O.INITIALISATION: Secure boot process that protects the integrity of the TEE ini-
tialization code and data, the authenticity of the TEE firmware, the binding of the
TEE firmware to the hardware and the protection against TEE firmware downgrade
attacks. (Violations: 4)

• O.INSTANCE_TIME: Provisioning of monotonic trusted application instance time.
(Violations: 0)

• O.OPERATION: Correct operation of its security functions by (i) protecting itself
against bugs and violation of good practices from the normal world and also the
trusted applications, (ii) control access to its services by the REE and trusted appli-
cations, (iii) have a secure state fallback upon failure detection without exposure of
sensitive data. (Violations: 26)

• O.RNG: Cryptographically secure random number generation. (Violations: 0)
• O.RUNTIME_CONFIDENTIALITY: Confidentiality of TEE and trusted application

runtime data and keys. (Violations: 12)
• O.RUNTIME_INTEGRITY: Integrity of volatile memory stored TEE firmware and

runtime data, trusted application code and runtime data/keys. (Violations: 16)
• O.TA_AUTHENTICITY: Verification of authenticity of trusted applications’ binary

code. (Violations: 1)
• O.TA_ISOLATION: Isolation between trusted applications. (Violations: 8)
• O.TEE_DATA_PROTECTION: Protection of TEE persistent data. (Violations: 2)
• O.TEE_ISOLATION: Isolation of TEE context from the trusted applications and the

normal world. (Violations: 10)
• O.TRUSTED_STORAGE: Protection of the TEE-provided permanent trusted storage

that includes both keys and data and its proper functionality. (Violations: 12)

2.3. TEE Capabilities and Types of Trusted Applications

Inside the TEE, Platform/OEM engineers in collaboration with third parties, can
implement several security oriented and security sensitive services utilizing its assurance
and secure storage capabilities, aiming for integrity and confidentiality of their assets.
In current implementations a centralized provision model is used, with the developer
of the corresponding TEE acting as the central authority that will allow or deny a ser-
vice to be installed on its TEE. The capabilities a TEE offers can be generalized into the
below categories:

• Isolated Execution
• Secure Storage
• Device Identification
• Device Authentication
• Device Attestation
• Platform Integrity

Utilizing the above core capabilities, TrustZone TEEs can provide a wide range of func-
tionalities such as: verification of kernel integrity, access to secure credential generation,
secure storage (Android Keystore, dm-verity), secure element emulation for secure mobile
payments, enforcement of corporate policies, implementation and verification of secure
boot, content protection, digital rights management solutions (PlayReady, Widevine, etc.)
and device integrity attestation in the scope of IoT and ARM Cortex-M; although its perfor-
mance could be optimized for low powered devices with novel attestation schemes [54].

From the scope of what is targeted by each solution, we can divide them into three
categories: services that enhance platform and normal world security, services that provide
functionalities to the user and enhance user security, and services towards third parties.
In the first category, solutions like Samsung’s TIMA (a proprietary solution limited to
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Samsung devices) [55], secure boot [56] and Sprobes [57] provide real-time protection,
integrity verification and introspection mechanisms for the security enhancement of the
normal world kernel/OS. Secure key storage, software TPM [58–60], trusted peripherals
and sensors [4] are other paradigms of solutions that can fit this category. Towards user
functionality and security enhancement, a wide variety of implemented solutions exist.
Online prepaid mobile payments [61,62], online transactions confirmations [63], ticketing
services [64], cloud storage access authentication [65,66], two factor authentication [67,68]
are some examples. In the third category, solutions like [69,70] provide protection for media
content and smart contract execution respectively.

2.4. Implementation Details of QSEE

In this section, we further elaborate on QSEE architecture, due to the fact that the
majority of the devices and documented attacks are based on this solution. QSEE is the
TrustZone-based TEE implementation that Qualcomm has installed in its SoCs. Like all
TEEs, QSEE includes user-mode applications in normal world that may require communi-
cating with trusted applications of the secure world in the TEE. For instance, the Android
process in charge of handling cryptographic keys named “KeyStore”, needs to be able to
communicate with a special trusted application (named “KeyMaster”) which provides
secure management of cryptographic keys using the capabilities offered by TrustZone (e.g.,
secure storage, isolation, etc.). However, user-mode applications cannot perform SMC
calls to enter the secure world, since they require kernel-space privileges. Qualcomm TEE
implementations solve this problem by using a Linux kernel driver (Figure 2, C2), called
“qseecom”, which enables user-space processes to perform a wide range of TrustZone-
related operations, such as loading trusted applications into the secure environment and
communicating with loaded trusted applications. The qseecom driver provides an ioctl
system call interface to perform SMC calls from the kernel-space in place of the normal
world application that needs the TEE functionality. The interface between the normal and
secure world through the qseecom driver is named Secure Channel Manager (SCM). This
channel is the largest attack surface to the TEE, as it provides one of the few handles that
the outside world can use to communicate with the trusted world.

Because of the security concern outlined above, the access to qseecom driver is re-
stricted to the minimal set of processes that require it. For example, in the implementation
discussed in [71], only four processes of the normal world are able to access “qseecom”:

• SurfaceFlinger (running with “system” user-ID): an Android system service, responsi-
ble for compositing all the application and system surfaces into a single buffer that is
finally to be displayed by display controller.

• DrmServer (running with “drm” user-ID): which is responsible for digital rights
management.

• MediaServer (running with “media” user-ID): that handles the media services of Android.
• KeyStore (running with “keystore” user-ID): a service that is responsible for storing,

generating, and handling cryptographic keys in Android.

The aforementioned four processes and any process that can access the QSEE should
not be vulnerable, otherwise, if an attacker manages to exploit any of them, then he can
directly access any trusted application bypassing the Linux kernel in the process (depending
on the vulnerability found). To make things worse, trusted applications are not written
in memory safe languages (typically they are written in the C language) which can allow
attackers to propagate the exploitation to the secure world. As we will see, QSEE lacks or
has weak implementations of common security mechanisms such as ASLR, stack cookies
and guard pages [9].

Qualcomm implements the TrustZone fast and yield TEE communication commands
(presented in Sections 2.1 and 2.4) by defining two distinct calls named scm_call() (yield)
and scm_call_atomic [1–4]() (fast). The scm_call() function is used to create and share a
common memory region to be used for the communication between the two worlds and it
populates a structure which defines the size of the shared buffer, the headers section of the
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buffer, the offset of the data to be sent and the offset of the receiving data. On the other
hand, the scm_call_atomic [1–4]() functions are used to initiate a communication that uses
1 to 4 variables (depending on the name of the function call) and is mainly used for one-off
sessions where the data exchange between the two worlds is relatively small.

Due to the fact that the memory allocated by the scm_call() function might not be
within writable or readable regions; it is first validated by the TrustZone kernel before it is
used by the trusted application. The validation is done in order to make sure the physical
address is within an allowed range, and is not for example, within the TrustZone kernel
memory range because as we analyze below, any modification to TrustZone kernel pages is
prohibited. The first line of defense is the ARM DACR mechanism analyzed in Section 2.1.
We will see that an attacker can potentially send pointers to the secure world bypassing
their sanitization.

TrustZone enabled Qualcomm SoCs on top of DACR implement another hardware-
based memory access control mechanism in newer devices. More specifically, some prede-
fined memory regions are flagged by the manufacturer as write protected, a policy which
is enforced by a hardware memory protection unit (MPU). In Qualcomm, these units are
called XPUs and are configured by the OEM during the manufacturing process. XPUs
do not only prevent access from normal word to secure world but it also controls the
access rights on any physical memory region defined by the manufacturer. For example,
the TrustZone kernel code segments are mapped with read-only access permissions by
utilizing the XPU mechanism and are verified during the secure boot process. This means
that once TrustZone kernel code is loaded into memory, it theoretically cannot (and should
not) be subject to any change.

Another important implementation detail is how loading of trusted applications and
their revocation is performed during the secure boot process of Qualcomm. Qualcomm’s
signed images are regular ELF files which are supplemented by a single special “Hash
Table Segment”. This segment includes three distinct components: the SHA-256 digest of
each ELF segment, a signature blob, and a certificate chain. The signature is verified over
the concatenated blob of SHA-256 hashes, using the public key of the last certificate in the
certificate chain (Attestation Cert). Moreover, the root certificate is hashed and validated
against a “Root Key Hash” which is stored in the device’s ROM or fused into one-time-
programmable memory on the SoC. This way a chain of trust is created, beginning from a
hardware-bound key, each certificate in the chain is validated with the binary signature
finally being validated by the last certificate (see Figure 4). Furthermore, it appears that
Qualcomm has elected to add unique OU fields to the signature of the binary, denoting
several attributes relating to specific attributes that will improve the security of the images
loaded. These attributes are:

• SW_ID: The software version that this signature belongs to. This acts as a version
access control system where its value is compared to an internal eFuse (registers which
can only be incremented). If the eFuse comparison indicates that the binary to be
loaded is older than the last loaded binary, then it is rejected.

• HW_ID: Attribute to bind the binary to a specific r device family, model, and OEM.
• DEBUG: Indicates whether the binary should have enabled or disabled debugging fea-

tures.
• OEM_ID: The ID of the OEM from HW_ID.
• SW_SIZE: The size of the signed data. (Hash Table Segment)
• MODEL_ID: The ID of the model from HW_ID.
• SHA256/SHA1: The hashing scheme used for signature verification.

Finally, it is important to mention that Qualcomm TEEs and TEEs in general are
considered high privileged entities. While the secure world can secure its own memory,
there is no inherent mechanism for the secure world to guarantee the safety of operations
on the normal world memory. This lack of information about the non-secure world from
within the secure world places a great deal of responsibility on the untrusted OS to sanitize
any inputs, especially pointers, that are passed into the secure world. The trusted world
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can manipulate any memory address of the normal world that is not protected by the
DACR or XPUs without taking into consideration the province of that address. Therefore,
a compromised TEE can easily be used to attack the normal world kernel even if the kernel
had no vulnerabilities to begin with (simply by directly modifying the kernel’s code from
the “Secure World”).
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2.5. Hardware Attacks

The ARM SoCs include a CPU cache that is utilized to improve data and instruction
fetch times. This cache is shared by both the secure and the non-secure world while it
incorporates the TrustZone NS-bit mechanism to ensure that each world is separated and
has proper access rights to its resources. More specifically each cache entry is tagged with
the NS-bit so that if a non-secure access attempt is made against a secure entry a cache miss
will occur [72]. This might lead to the belief that the cache is safe to be used by the trusted
world but recent attacks [73–76] have shown that there is a major problem in this shared
cache design.

The main problem here is the fact that the cache is shared between the two worlds
and besides the fact that it is protected by TrustZone, an attacker might find indirect ways
to infer secrets from the trusted domain. This kind of attack is called a side channel attack
and its basic characteristic is that the attacking entity tries to measure specific parameters
of the victim process that will ultimately provide the attacker with enough data to recover
the information targeted in the first place.

In the case of caches an attacker can measure two basic things, the execution time
of the victim process and which cache lines where accessed. The basic assumption for a
cache-based side channel attack is that the attacker needs to be able to manipulate the cache
in some way so as to achieve a known state of the cache before it lets the victim process to
take control. There are three basic techniques for cache-based side channel attacks:

• Evict + Time [77]: Initially the execution time of the victim program is measured
without any changes. Afterwards specific cache sets are evicted that were previously
used by the victim program so that in the next execution of the program the time will
potentially change. These changes in execution time are correlated to the changes that
are made to the cache so that useful information can be extracted which can lead up
to secret cryptographic key exposure in the case of AES.

• Prime + Probe [77]: The entire cache is first filled (primed) with known and controlled
data by the attacking process. Then the victim process executes while the attacker
closely monitors how the initial known state of the cache is changing. Depending on
the cache changes that he detects he can obtain information of the victim operation
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and the nature of its behavior. The main benefit of this technique is that it does not
require a shared memory map between the victim and the attacker, making it optimal
for targeting the trusted world.

• Flush(Evict) + Reload [74]: For this attack to work the attacker and the victim need
to share an identical read-only memory object. The attacker first flushes (or evicts
if flush is not available) any cache lines that map to the shared memory object and
allows the victim process to run. Afterwards the attacker measures the time it takes
to run its own instance of the program so that he can tell what parts of the shared
memory object where already loaded in the cache. This is a powerful attack because
the attacker can learn exactly what data were loaded in the cache.

• Flush + Flush [78]: This attack is the reverse version of the flush + reload attack. The
attacker initially flushes the cache lines that map to the shared object (like before) and
then he lets the victim program to run. In the next step, instead of running the program,
he flushes the cache once again while measuring the flushing time. Depending on
what cache lines were loaded during the victim execution the timing of the flushing
operation will change and the attacker will be able to infer information about the
victim process. The main benefit of this attack is that it is stealthier from the previous
ones because it does not cause any cache misses during its execution something that
many attack detection mechanisms seek to identify a cache-based attack.

Aside from the cache-based side-channel attacks we have seen this far, there is another
major category of side-channel attacks named fault attacks. The target of these attacks is to
induce faults during specific operations so that the process is manipulated in producing
results that expose secret information. The main application of fault attacks can be found
in differential fault analysis, which is a technique that specifically targets cryptographic
algorithms, but it is also used in attacking programs in order to force them down specific
control branches during their execution. Faults can be induced with techniques that utilize
electromagnetic radiation [76], operation voltage change [79] and operation frequency
change [10]. This list is not complete, but its aim is to show the diversity of the possible
attack paths and the difficulty of the defense against them.

A recent popular fault attack is the rowhammer attack that targeted the RAM of
the victim device [80]. The RAM is composed of capacitors that can store an electric
charge, if a capacitor has a charge then it represents a logical one, if not it represents a
zero, this way the RAM can store binary data. In recent RAM implementations (after
DDR3) these capacitors have shrunken down so that more of them can be installed in
the same die, something that has made each capacitor susceptible to interference from
neighboring capacitor electromagnetic radiation. This is the attack model of rowhammer,
capacitors neighboring to the victim RAM line that contains data to be faulted, are rapidly
activated (recharged so that they do not lose their charge) so that the target row will be
altered (faulted).

3. Attacks on Current Implementations

In this section, we elaborate on the discovered vulnerabilities and exploits. We will
focus mainly on QSEE, since it the most widely deployed TEE implementation [81] and
most vulnerabilities have been discovered for this platform. An exception is the analysis
of a set of discovered attacks for the Kinibi TEE implementation (see Section 3.1.2) and
attacks on the TrustedCore of Huawei (see Section 3.1.3). Moreover, the presented attacks
are solely based on Cortex-A TrustZone, as Cortex-M is still in its early stages of growth
and it is not widely deployed.

We have developed a taxonomy that aims to provide a better understanding of the
analyzed TrustZone attacks. The taxonomy firstly differentiates each attack based on three
generic categories, software attacks, architectural attacks, and hardware attacks. Software
attacks are focused on exploiting the software stack of the implementation, including the
different operating systems and the applications that run on the system. The architectural
attacks are based on the general architecture of the system that is comprised of both
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the design of the underlying hardware and the software that runs on the system. The
main difference that architectural attacks have is that they exploit a fundamental design
flaw of the system and not a specific bug found by accident. Finally, hardware attacks
utilize any possible side channel as well as fault injection to transfer information from the
trusted world to the normal world, these channels include execution times, cache timing
attacks and power usage. For each one of the above three generic categories, the proposed
taxonomy makes the following subcategorization (see Figure 5):

(1) Software Attacks

(1.1) Buffer Overflow & Overread Based: Attacks that exploit common memory
attacks (buffer overflows/overreads)

(1.2) Logic Based: Attacks that exploit logical bugs such as faulty comparison
branches, incompatible variable types etc.

(1.3) Bad Use of Crypto: Insufficient strength of used cryptography such as usage
of digest functions for authenticated secure integrity verification.

(2) Architectural Attacks

(2.1) Unused Security Features: Unused security features such as downgrade pre-
vention functions or pointer sanitization utilities.

(2.2) Underlying Architecture: Exploitation of underlying architectural features
of the TrustZone implementation such as debugging functions, device sleep
features and interconnects.

(3) Hardware Attacks

(3.1) Side Channel Attacks: Exfiltration of data from the device by passively mon-
itoring hardware components (volatile memory) of the device and inferring
data from them.

(3.2) Fault Injection Attacks: Exfiltration of data from the device by monitoring
hardware components while actively forcing faulty operations to execute.

(3.2.1) Electromagnetic: Fault injection attacks that use electromagnetic means
to induce faults.

(3.2.2) Voltage & Frequency: Fault injection attacks that use voltage and/or
the CPU frequency to induce faults.Sensors 2021, 21, x FOR PEER REVIEW 13 of 45 
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3.1. Software Attacks
3.1.1. Bits Please (Logic-Based)
Privilege Escalation to TrustZone

First, we describe a set of attacks that target the QSEE and come from the same
researcher [82–84]. The feasibility of these attacks has been demonstrated through the
development of exploitation code. The first attack was published on [82] and is composed
of three basic steps as shown in Figure 6. In the first step, the attacker, with zero permissions,
exploits a vulnerable implementation of the MediaServer Android application running in
the normal world. As mentioned previously, MediaServer has the privilege of accessing
the qseecom driver in order to communicate with the TEE and in turn with the WineDive
trusted application. In the second step the attacker, through MediaServer, gains control
of the Linux kernel by exploiting a vulnerability in the qseecom driver (which runs in the
context of the normal world kernel). At this stage, he could perform direct SMC calls to
the secure world through the privileged standpoint of the normal world kernel. Finally, in
the third step, the attacker achieved arbitrary code execution in the context of a trusted
application that he exploited by having direct access to it through SMC calls. While the first
two steps and their vulnerabilities were not related to TEE (and hence we do not analyze
them), the third step exploits a vulnerability in the QSEE.
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Observation 1: The TEE can be directly accessed from kernel privileged applica-
tions through SMC system calls. This provides a significant attack vector since privilege
escalation attacks are abundant allowing for potential exploitation of the trusted world.

More specifically, in the third step, first the attacker discovers that one of the several
available SMC calls, does not perform memory checking allowing to write a zero DWORD
in any specific memory address (zero write primitive). This vulnerability stemmed to
the fact that the attacker was able to call a trusted application that uses a shared memory
through an scm_call_atomic() function. More specifically, the trusted application expected
to write the (zero DWORD) result of its operation to a specific memory location which is
now controllable by the attacker as it is a parameter in the scm_call_atomic() function. This
zero write primitive is used to disable the memory address checking mechanism that is
used to validate each memory address that is passed to the secure world.
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By disabling this operation, the attacker is able to exploit other SMC calls in order to
create different kinds of primitives. In particular, after the invalidation of the control mech-
anisms, the attacker now is able to utilize SMC calls to upgrade the zero-write primitive
to arbitrary write and read primitive. Now that the attacker has arbitrary write capabili-
ties, the problem is to identify executable memory regions to write his own shellcode in.
TrustZone kernel code pages are mapped as read-only, thus no modification is possible
without first circumventing this protection. A specific register within the ARM MMU, the
Domain Access Control Register (DACR) is responsible for the protection of TZ memory, by
controlling which memory regions are accessible for reading and/or writing. By utilizing
the aforementioned arbitrary write primitives, a modification to the value of the DACR is
made (the entire DACR is set to 1, see Section 2.1) that enables read and write capabilities
to all controlled memory regions effectively nullifying the mechanism. With this done,
the attacker can now write on any memory region that is not protected with the XPU
mechanism. To finally achieve execution, he wrote his shellcode in some identified “code
caves” within the kernel which are executable allocated memory regions that are unused
by the kernel and altering them will not affect it.

TrustZone Kernel Exploitation

The second published attack [71,83] by the same researcher, provided an exploitation
chain that could let the attacker reach TrustZone kernel privileges. The researcher followed
a different path and chain of exploits than the previous attack, as he skipped the Linux
kernel exploitation altogether and escalated his privileges in the TrustZone from user to
kernel. In particular, the attack is composed of three stages, ranked by the level of privileges
the attacker achieved (see Figure 7. The first two stages are identical to the previous attack
with the only difference being that instead of exploiting the user-space kernel through
the MediaServer application, he directly used the qseecom driver since this application is
privileged to access it (see Section 2.4).
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Observation 2: The TEE can be indirectly accessed through the privileged applica-
tions that can communicate with the TEE driver and in turn with the TEE itself. These
applications must be bug-free and well protected.

The MediaServer application can only communicate with the Widevine trusted appli-
cation which is responsible for DRM media playback. The exploitation of the Widevine
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trusted application was based on a memory copy buffer overflow in an unused function
named PRDiagVerifyProvisioning(). Due to the buffer overflow, an arbitrary write primitive
is achieved, which allows the execution of arbitrary code within the context of the trusted
application.

Observation 3: The TEE does not implement classic security measures such as ASLR.
This allows for common code execution and privilege escalation attacks that could have
been avoided.

Since the executable code segments of the trusted application are mounted as read
only, the attacker had to resort to a ROP chain to run his code, something that turned out
to be infeasible. To bypass this problem, he segmented the code execution in two parts,
the normal world part, and the secure world part. Any piece of code logic that did not
need QSEE privileges was emulated within the normal world, and only when the intended
functionality needed to be run within the QSEE, then small ROP chains were invoked to
execute these special cases, this is depicted in Figure 8. The only functionalities that needed
these elevated privileges were only two:

(1) Reading and writing memory (QSEE Memory Access)
(2) Calling system calls exposed by the TrustZone kernel (QSEE System Call Invocation)
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Practically, what the researcher did here, is that instead of creating large and possibly
infeasible ROP gadgets, he divided his exploitation code into a simple execution segment
which included common ARM opcodes and a QSEE segment which included opcodes
that could only run within the QSEE environment. This way he only needed to write
ROP gadget chains for the QSEE functionality of his exploit, the rest was run in the
normal world where he could execute any command without resorting to ROP. At this
stage, he was limited to code execution in QSEE user-space but had no TrustZone kernel
privileges. The only attack surface to the kernel appeared to be through the system call
functions exposed by the TrustZone kernel to the trusted applications. For this reason, in
the third step the attacker exploits the WideVine Trusted application to pivot and exploit
the TrustZone kernel.

Similar to the normal world applications, trusted applications running in secure world
user-space can invoke system calls exposed by the TrustZone kernel, by issuing a specific
instruction named SVC. In the normal world when a system call is performed the code
execution is transferred to the Linux kernel. Similarly, when a trusted application performs
a system call the execution flow is transferred from the user space trusted application to
the TrustZone kernel to handle the SVC request. In particular, when an SVC instruction is
called the TrustZone kernel uses the VBAR register to handle the SVC requests and find
the address of the appropriate kernel exception vector. The system call handling in the



Sensors 2021, 21, 520 16 of 46

TrustZone kernel accepts as input the arguments of the system call as it was issued by
the user space trusted application running in QSEE. However, a critical observation here
was that the TrustZone kernel does not perform any kind of checks on the validity of the
provided input buffers, meaning that it accepts all provided arguments in system calls
coming from legitimate trusted applications as valid, despite the fact that there exist some
basic sanity checks of the input.

With this in hand, the researcher identified an exploit that allowed him to force the
kernel to use an attacker-made exception vector table (instead of the legitimate one) and
thus the attacker was able to overwrite any exception address with a pointer to any other
function (system call hijacking). The only objective remaining, is to find a writable and
executable memory region to write the shellcode that the hijacked function pointer will
point to. The trusted application code segments are perfect candidates, besides the fact that
they are write protected by the DACR mechanism since it can conveniently be disabled with
the system call bug from the Privilege Escalation to TrustZone attack described previously.
With the DACR memory protection disabled, the researcher was able to write any shellcode
in any code segment of the trusted application and invoke it in the context of the TrustZone
kernel by calling the modified system call handling function and thus achieving arbitrary
code execution with secure world kernel privileges.

Observation 4: The TEE kernel in many cases blindly trusts the trusted applications
since they are considered to be untampered and secure. This could provide an attack vector
if a trusted application is successfully exploited.

Extraction of Master Keys

The final attack that was described by the same researcher [84] extends the previous
ones and demonstrates the ultimate impact that an attack to the secure world can potentially
have in an Android system. This attack is a chain of exploits utilizing the capabilities that
were gained from the previous two attacks described in Sections 3.1.1 and 3.1.2. It allows
the extraction of any TEE protected key, such as the Full Disk Encryption (FDE) key
of Android, thus allowing the decryption of any device encrypted disk that contains a
vulnerable version of the WideVine trusted application.

By reverse engineering the KeyMaster trusted application, the researcher discovered
that the FDE key (i.e., a symmetric key used for disk encryption) is not protected by a
hardware-bound key but instead from a key which is derived from a hardware-bound key
and stored in the global buffer of the KeyMaster trusted application. This means, that it is
protected from other trusted applications (trusted application isolation), but it is accessible
from the TrustZone kernel. Based on this observation, the researcher was able to execute
code inside TrustZone kernel (with the primitives established from the previous sections)
that would extract the FDE key from the KeyMaster trusted application, breaking this way
the security of the full disk encryption scheme in Android.

Observation 5: Even with the security guarantees of TrustZone, critical components
such as the FDE key can be extracted if the kernel of the secure world is compromised.

The researcher has noted that this attack was possible because the encryption of the
disk was not based on a hardware-bound key but on a software key. This, in combination
with the already achieved TrustZone kernel exploit, enabled this attack which ultimately
broke the FDE scheme of Android. A key remark that the researcher makes, is that the full
disk encryption system of the android is only as strong as the security of the TrustZone
kernel or the KeyMaster trusted application, as a problem with any of them will potentially
leak the master key of the FDE. Finally, an overview of all the aforementioned attacks is
depicted in Figure 9. As it can be seen each attack is building upon the previous attacks in
order to achieve higher privileges within QSEE.
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3.1.2. Unbox Your Phone (Buffer Overflow and Overread-Based/Logic-Based)

Until now we have seen a set of attacks on a TrustZone-based Qualcomm implementa-
tion of a TEE. A security researcher [11,85,86] discovered a set of major vulnerabilities that
affect another widely adopted TEE, the Kinibi TEE developed by Trustonic, which is also
based on the TrustZone technology. Like the previous attacks, the problem is rooted in the
code implementation of a trusted application, but it was made available to the attacker due
to inadequate protection of the communication between the normal world and the trusted
world. More specifically, Trustonic has implemented an overlay named TLC (trustlet
connector) that acts as a gatekeeper to Kinibi. The TLC exposes an interface to the normal
world userland, that in turn will expose an interface to the normal world to use via UNIX
domain sockets (see Figure 10). These domain sockets make sanity checks on TEE requests,
enforce access control through MAC/DACs schemes and are further protected through
selinux with the only entities having access to them being some Samsung implemented
proxy applications. The proxy application that the attacker targeted is called “tlc_server”
and it handles the communication for five supported trusted applications.
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First, the researcher identified an authentication bypass in the tlc_server binary by
finding out that all commands exposed by this application implemented a way to verify the
caller’s permissions except for one command that did not include such a security mecha-
nism (Vuln 0). This way any user-space application could use this handle to open a session
to a trusted application and send arbitrary commands to it. Through this authentication
bypass, the attacker gained access to the ESECOMM trusted application that implements a
secure interface to an embedded secure element with the use of the “SCP03 Global Platform
Secure Channel Protocol”. The messages that are sent through this protocol are APDUs
(application protocol data units) which are encoded in TLVs (type-length-value). There is
a utility function in this trusted application that parses these TLVs that although makes
some sanity checks on the TLVs themselves, it fails to check if the number of TLVs exceed
the number of max TLVs that can be stored on each structure. By sending a number of
TLVs that exceeded the capacity of the structure, the researcher was able to orchestrate an
overflow attack (Vuln 1). Moreover, these structures are allocated on both the stack and the
heap, providing a variety of available attack paths. Additionally, the TLV parser fails to
properly bound check the reading from the input buffer that contains the TLVs (it checks
if the offset is equal to the end of the buffer instead of if it is lower than it) and it can be
trivially be bypassed to read beyond it (Vuln 2).

Another stack buffer overflow is present within the ESECOMM trusted application
in a function called “parse_ca_cert()”. This function contains a textbook buffer overflow,
as it fails to check the length of an input value from a TLV and it copies it to a 32-byte
buffer. Although there is a restriction that TLVs should not exceed 0 × 400 bytes in size, it
is not enough to mitigate this attack as the buffer is only 32 bytes in size (Vuln 3). There
is a similar vulnerability in another function named “parse_scp_param” which is used
to parse the secure channel parameters in order to establish a secure channel between
Kinibi and the secure element. This function parses and copies several parameters for the
Diffie-Hellman key exchange functionality. All of these parameters are sanity checked
except for one parameter that is partially checked that allowed the attacker to establish
another overflow attack (Vuln 4).

In contrast with the previous attacks, the next attack requires that the user has root
privileges in the normal world, but it provides by far the largest attack surface as it can
be exploited from many places within the code. In order to exploit this bug, the attacker
must bypass the tlc_server since it includes input sanitization that prevents this attack
and should use the block device driver (/dev/mobicore) directly by exploiting one of the
many applications that have access to it. The problematic behavior lies on the parameter
that is used to specify the memory offsets of the request and response messages within a
common buffer that the two worlds share (named TCI). This TCI buffer contains a field
named “envelope_len” that defines the offset within the buffer that the response message
should start. This field is set by the tlc_server or any other valid applications and it is
inherently trusted by most trusted applications, if an attacker obtained root privileges, he
could set this field to any value he wanted and thus force a trusted application to write or
read on any given memory (Vuln 5).

The researcher exploited this bug by setting arbitrary envelope_len values in order
to specify the offset that he wants to write to, even if this offset is beyond the limits of
this buffer. This way a semi-controlled (only the address offset is controlled, not the data
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to be written) write primitive to the secure world is found, that could be fully controlled
if a trusted application that has user-controlled output is found amongst the trusted
applications residing in the TEE.

As it can be seen in Table 1, the researcher managed to find six vulnerabilities in total
that where all documented and submitted as SVEs. This number of vulnerabilities should
be indicative of the attack paths that an adversary might be able to take when he targets a
TEE. All these vulnerabilities where available due to software bugs that could have been
avoided with proper coding techniques.

Table 1. Kinibi vulnerabilities of the unbox your phone attack reported as SVEs.

Vulnerability Description

Vuln 0: SVE-2017–8888 Authentication Bypass in the tlc_server binary.

Vuln 1: SVE-2017–8889 Buffer Overflow in the TLV storing struct within the ESECOMM
trusted application.

Vuln 2: SVE-2017–8890 Buffer Over-Read of the TLV containing buffer sent to the ESECOMM
trusted application.

Vuln 3: SVE-2017–8891 Buffer Overflow in parse_ca_cert() of a 32-bit buffer with a
400-bit input.

Vuln 4: SVE-2017–8892 Buffer Overflow in the parsing of a Diffie-Hellman parameter in the
parse_scp_param() function.

Vuln 5: SVE-2017–8893 Buffer Overflow of the “envelop_len” of the TCI shared buffer.

Observation 6: Code bugs are abundant in applications. Special care must be taken
when developing applications that belong either to the trusted or world or to the nor-
mal world.

Observation 7: Since code bugs cannot be completely avoided, critical applications
must not contain a single point of failure. On each application layer there should be security
and sanity checks that will cripple an attacker if he manages to bypass any previous layers.

3.1.3. Other Software Attacks

Software attacks are common against TEE implementations, for example, the attack
documented in [87] (Logic-based) demonstrates how a failed memory validation leads to an
arbitrary read and write exploit in the secure world. Similarly, in [13] (Logic-based) a flawed
SMC memory checking mechanism allowed a kernel-privileged attacker to write controlled
data to arbitrary secure world memory. On another occasion [88] (Buffer Overflow and
Overread-based) an overflow attack allowed the researcher to achieve arbitrary code
execution within the secure word. Besides software bugs, there are other attack vectors
such as bad usage of cryptographic algorithms, in [89] (Bad Use of Crypto) the researcher
discovered that the secure boot process used in a TEE protected device was only based on
SHA256 to verify the integrity of the system which allowed him to modify and load any
piece of software completely bypassing the secure boot.

In [90] (Logic-based) another vulnerable SMC function exposed by QSEE was dis-
covered. Because of a vulnerability in the handling of input of SMC calls again - in the
specific case a signed comparison on unsigned user input bug - an attacker could write
zeros (0) to a secure memory region of his choice, bypassing that way security mechanisms
and finally gaining arbitrary read/write capabilities in the context of the TrustZone kernel.
This vulnerability affected at current time all devices that used the Snapdragon 805 SoC
and utilized QSEE for TEE. On another occasion, Di Shen [29] (Logic-based) published
an attack affecting HiSilicon’s TEE, another implementation less widespread than QSEE
found in found in Huawei devices. The researcher discovered a vulnerability that allowed
him to issue arbitrary SMC calls which led him to a secure world arbitrary write gadget. By
subverting security protections that were in place he managed to achieve code execution
in the context of the secure world. This attack enabled him to gather sensitive fingerprint
data from the secure memory region.
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On another occasion [91] (Buffer Overflow and Overread-based), the researcher man-
aged to find serious security bugs within the ARM trusted firmware image installed in a
commodity Android smartphone. This has allowed him to run code in ARM Exception
Level 3 (supervisor) which has higher privileges than the TrustZone TEE. With this in hand
he was able to completely bypass the face ID authentication mechanism that runs within
the TEE by patching the binary of the trusted application so that it accepts any face as a
valid authenticated user.

In [92] (Buffer Overflow and Overread-based/Logic-based), several security flaws
were identified in the Huawei TrustedCore which used easily bypassed white-box AES for
the encryption of the trusted applications which allowed the researchers to decrypt them
and reverse engineer them. Through further analysis, they discovered a design flaw in
the KeyMaster trusted application that used a constant key to encrypt the master key and
extract it. Finally, they discovered a buffer overflow in the KeyMaster trusted application,
which allowed them to execute code within the context of the TEE kernel.

3.2. Architectural Attacks
3.2.1. Boomerang Vulnerability (Unused Security Features)

This class of vulnerabilities [14] arises due to a fundamental flaw in the design of the
communication between the rich and the trusted operating system (OS). The impact of
BOOMERANG is that an attacker can gain arbitrary read and write capabilities, on any
memory location in the rich OS, by using the high privileged trusted OS as a proxy. With
these gadgets available, the attacker can bypass the sand-boxed memory of the Android
system and retrieve data from other applications, obtain root privileges, and potentially
gain full control of the rich OS. The research has shown that this problem extends through
hundreds of millions of devices that are currently on the market.

The exploitation is possible due to the fact that the trusted OS can read and write any
memory address of the rich OS, without taking into consideration its access rights proper-
ties due to its high privileges. In more detail, both operating systems have mechanisms
in place to sanitize memory addresses and protect them from unauthorized access from
within the OS, the rich OS protects its memory from normal world applications and the
trusted OS from trusted (and normal) applications. The problem arises when the system
performs cross OS memory access, the untrusted environment has no authorization to act
upon trusted memory, as expected. The trusted environment, on the other hand, can access
any memory address given to it and has no way of determining the security properties
that exist in the normal OS or the provenance of this address. As a result, the trusted
OS, since it does not check the privileges of the rich OS caller, will perform any action on
any memory address blindly. The method used to avoid the security measures in place is
implementation dependent, the researchers have successfully attacked a variety of device
architectures that cover a large proportion of the available devices on the market.

The actual attack is performed from the non-secure world, where an application or
user passes the malicious address as a variable to a secure world call. Due to the lack of
message exchange standardization, not all addresses passed to the trusted application are
monitored and as a result, not sanitized. This way an attacker can read or write on any
memory inside the non-secure world and depending on the available trusted applications,
he can create gadgets that will write specific data which can potentially lead to full exposure
of the normal world. The attack, according to the paper, was successful against the QSEE
trusted execution environment by using widely deployed trusted applications, such as the
KeyMaster, WideVine, and PlayReady. When vendor-specific trusted applications are taken
into consideration the attacker is provided with many more trusted applications to choose
from. The researchers, using a Huawei device, have gained root access on the device by
using arbitrary read and write functionality gained this way.

Figure 11 explains the attack in a high level. The attacker wants to transfer the
malicious pointer to the trusted application (C4). In order to do that, he populates a
structure with the pointer without annotating it to avoid the sanitation process. The data
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is then passed to the underlying supervisor mode by using three possible routes: a TEE
Daemon (C3) that runs on the background and also handles pointer sanitation, an API
that can be used directly from within the application (C2) and the most implemented
way that uses a library to provide the aforementioned API (C1). In the cases of C1 and
C2, the pointer sanitation is done in the normal world kernel instead of the TEE daemon.
The normal world kernel will now make an SMC call to change worlds and transfer the
data structure to the secure monitor which in turn will pass them to the trusted world
kernel. The data structure is now in the trusted kernel which will check if the pointers
within the structure refer to memory inside the secure world. Since the malicious pointer’s
provenance is the non-secure world, it passes the test besides the fact that it can potentially
point to normal-world kernel memory. Finally, the trusted kernel passes the structure
to the trusted application which will act on the given non-secure world address without
any further checks. It is obvious that by the time the attacker passes the normal world
pointer sanitation, there are no other security checks in the way and since the secure
world has absolute privileges on normal world memory, it can access and manipulate any
given pointer.
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Observation 8: The TEE can be utilized as a primitive for attacking the untrusted
world due to its high privileges. Even without exploiting the secure world, it can be
misguided into modifying memory zones in the normal world which otherwise would be
inaccessible due to the high privileges of the TEE.

The privileged standpoint of TrustZone TEEs has been identified from 2013, in [93],
where the researcher proposed a powerful rootkit installed in the secure word. The secure
world has total access to all memory, allowing modification of the normal world kernel
structures providing the basis for a rootkit that has access to every part of the system.
Additionally, TrustZone is able to isolate its state and block access from the normal world to
its own memory, effectively concealing the existence of the rootkit. Although the researcher
does not present a specific implementation, he proposes the use of various techniques
to cloak the visibility of the code running in the secure world and make its detection
even harder. Essentially the secure world provides all the requirement for an attacker to
implement a malware that can control the whole system and be unable to be detected in
doing so. Furthermore, in [94] the researchers also investigated the possibility of concealing
and checking the integrity of a hardware-assisted rootkit.
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3.2.2. Downgrade Attack (Unused Security Features)

This kind of attack was found to be effective against many ARM TrustZone-based
TEEs that are widely deployed [95]. The root of the problematic behavior is in the trusted
application verification by the secure world and on how the TEE checks for the version
of the trusted application. This research has presented that an attacker could potentially
load older versions of a trusted application to the system and execute them instead of
the already installed ones. This way, a system is vulnerable to any past found and fixed
problems that might have occurred since the attacker can just load the vulnerable trusted
application and exploit it.

When a vendor is aware of a flaw in one of his trusted applications, he can issue an
update that will fix the problematic behavior. The new application is accepted into the
system since it is signed with a private key and verified with a corresponding public key
trusted by the TEE. The presumed behavior is that the system, after the update, will not
accept an old version of the trusted application, contrary to that, the system will accept
any version of the trusted application as legitimate and let it run, since it is also signed
with a correct private key. It is noteworthy that most of the TEEs have mechanisms to
version control their trusted applications (and thus fix this vulnerability), but according
to a blog post by Gal Beniamini [9] all the trusted application binary images (45 different
firmware images) that he analyzed had a version number of zero, even the updated ones.
It is obvious that if the version number is not incremented, the TEE will accept any version
of the trusted application believing it is in the same version.

With that in mind, it is obvious that an attacker that has access to older and vulner-
able versions of trusted applications, in conjunction with the necessary root privileges
(not always required), can overwrite the up to date and secure trusted applications and
exploit flaws that existed before the fixes. With this attack available, it is mandatory that
trusted application developers should employ the version control mechanisms that the
TEE manufacturers provide.

Observation 9: Developers are not fully utilizing the security features of the TEE.
Even if most TEE implementations provide version-based blocking for their trusted appli-
cations, it was found that the developers did not use this functionality. This has led to a
major architectural vulnerability that allowed attackers to load old versions of trusted ap-
plications.

3.2.3. Vulnerabilities in a Heterogeneous SoC (TrustZone Implementation-Based)

From 2000 until today companies have anticipated the need for more advanced FPGA
functionality that could come from integrating SoCs in their model. A heterogeneous SoC
is a system that combines a FPGA, a SoC and other intellectual properties (IP) and devices.
Having the security of TrustZone in hand was very important for FPGAs since they are
actively used to handle sensitive data in cloud infrastructures. For example, FPGA-based
SoCs are used for secure data processing, to implement internet protocol security (IPSec), to
secure communication in software radio systems, to secure cyber-physical infrastructures,
industrial control systems and safety-critical systems [96]. The question raised by the
paper [97] is whether the security provided by the TrustZone is propagated through the
variety of IPs in the system and illustrated by a number of theoretical examples. The
communication between the various devices and the IPs within the programmable logic
partition of the FPGA is established through a programmable interconnect called Advanced
eXtensible Interface (AXI) that multiplexes the communication between the IPs and the
devices. The IPs are divided into secure and non-secure and depending on the access rights
of the requestor, the AXI allows or prevents him from accessing the IP. All the attacks are
based on the ability of the attacker to modify the design of the FPGA and the AXI, there
are six attacks demonstrated:

• The first attack changes the design in order to modify the security bits of the request
and make the AXI think that the requestor is a secure application and as such has
access to all IPs regardless of their security level.
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• The second attack is a DoS attack that is the reverse of the previous attack, it sets the
security bit of every request to non-secure so that any legal request from the secure
side to a secure IP is denied from the AXI.

• Like the previous attack, the third attack forces to programmable logic (PL) part to
always have a positive response to IP requests. Any non-secure request to a secure
IP will have a false positive response when the process should have stopped with
an error.

• In the fourth attack the PL is configured to return an error on every access, so that all
the IPs connected to the specific AXI will be unusable.

• The fifth attack is different from the previous, as it does not incorporate message
manipulation. A FIFO buffer is injected inside the AXI interconnect within the PL and
configured to spy on any transaction the AXI handles, especially secure transactions
between secure components.

• In the final attack, a malicious IP with a memory mapped master port is designed into
the FPGA. With the master port, the IP will have direct access to secure memory with
sensitive data. In order for the attack to work, the mapping of the master port should
cover the memory containing the information to be extracted.

In [96], the researchers have extended the research around these attacks with a more
detailed analysis of these security issues. Furthermore, they propose possible mitigations
that could be applied across the system (SoC, FPGA and AXI) while they underlined the
need for the integration of security in the FPGA design process.

3.2.4. Other Architectural Attacks (TrustZone Implementation-Based)

On another occasion [98,99], the debugging feature of ARM named CoreSight was the
enabler of a series of attack not only to the SoC in general but also in the TrustZone TEE
installed in the system. More specifically, the researchers managed to extract fine grained
information from the trusted world that allowed them to completely reverse the AES
encryption process that was executed in the TEE. This way, the key of each AES round was
discovered which ultimately exposed the core encryption key that was used in the process.
Additionally, the researchers were also able to reconstruct images of the fingerprints stored
in the TEE, exposing very sensitive and non-revocable authentication data.

Additionally, a fundamental of architectural attack [100–102] was made publicly
available against the gaming console Nintendo Switch. The main issue of this vulnerability
is a core architectural design that affected the deep sleep state of the console which failed
to validate the saved state of TrustZone in the device memory. This way the attackers were
able to change the saved state while also changing the MAC and the key used in the MAC
process. As a result, the device would wake up with a changed but valid TrustZone state
leading to a complete compromise of the trusted world.

3.3. Hardware Attacks
3.3.1. Side Channel Attacks

Side channel attacks [75], are a family of attacks that gather leaked hardware infor-
mation in order to gain sensitive data from a system. In essence, as their name indicates,
they utilize a side channel to obtain information instead of the standard channel that might
contain security roadblocks. When a process is running a cryptographic operation, an
attacker can measure and accumulate information such as: cache access attempts, timing
computations, power consumption, electromagnetic leakage and even the sound produced
during a computation. It is through that hardware information that an attacker can gain
sensitive data and expose cryptographic keys.

The cache timing attack is a side channel attack and consists of two phases, the timing
phase where the attacker sends plain text, known or unknown, to a cryptographic imple-
mentation and then measures the time it takes for each encryption. In the second phase,
after enough plain texts have been encrypted, the attacker correlates the measurements
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and ends up with a much shorter key space that can be brute forced easily or even the
key itself.

The attack is based on a core CPU architectural design, the use of the cache. More
specifically, the CPU uses the cache to store data for quick access, if the data it needs are
contained within the cache, then we have a cache hit, if not a cache miss. Depending on
how many cache hits or misses happen during the execution of a sensitive operation, the
total run time could be affected greatly. After enough samples are collected, an attacker
can correlate the inputs with the time taken for each execution and deduce the key. This
method is the simplest, there are more advanced methods like, evict + time and prime +
probe, that actively manipulate the cache in order to produce data with more entropy that
can provide results with a smaller data set.

There are many cases where these attacks were successful against Intel x86 CPUs
but three cases [12,73,75], have shown that ARM-based CPUs are affected just as much.
Weiß et al. [75] implemented an attack on a virtualized ARM system that contained two
isolated worlds, although it was not a TEE, they have proven that cross-isolation attacks are
possible. On the other hand, Lipp et al. [12] have successfully attacked consumer Android
devices with advanced cache timing attacks and have shown that TrustZone technology
does not protect the system from cache timing attacks. Finally, Zhang et al. [73] were also
successful in applying their attack named “TruSpy” against a TrustZone implementation
and have proven that it is possible for an attacker coming from the real world to steal secret
information from the secure world isolation using a timing-based cache side-channel. We
will analyze the core concepts of side channel attacks found in the literature.

Cache Timing Attack

The attack presented by Weiss et al. [75] is the first indication that cache-based timing
attacks could be utilized to break virtualization barriers. That is why the researchers have
emulated a TEE by creating a virtualization environment where two worlds exist just like
we have seen in the TEE so far. They have installed an AES based mutual authentication
protocol that is resistant to replay attacks with all the encryption being done on the secure
side. This authentication scheme is the target of the side channel attack that will ultimately
reduce the key space so much that brute forcing the key will be trivial.

The attack that the researchers have decided to implement is a basic timing attack as it
is the most general possible attack that could be applied to almost all devices. They have
separated the attack in two stages, the offline and the online phase. They first begin with
the offline phase, where they proceed to collect timings of multiple encryptions using a
known, all zero key. This phase will produce data that will later be correlated with the data
collected from the online data set. In the next phase, the same procedure takes place but
this time the key is unknown. After enough timing data is collected, the two compiled data
sets are correlated with the final product being the possible values for each byte of the key.
These values are generated based on a probability threshold, that is, if a byte of the key has
a chance higher than the threshold to hold a specific value, then this value is added to the
list of possible key values, if not then it is left outside of the list (see Figure 12).

The attack was implemented on an ARM-based development board named Beagle-
board with an L4 microkernel as a virtualization layer. The board has an ARM Cortex-A8
which has been used widely in smartphones when the research paper was being developed.
The researchers have timed the execution time of each encryption precisely with the usage
the ARM CCNT register, which holds the total clock cycles of the CPU since the last reset.
With all these in hand, they applied the attack to several AES implementations with most
of them being vulnerable to some degree.
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Prime + Count

The prime + count attack is quite different from the previous attacks, as it is not
as fine grained, but it promises reduced noise levels introduced by the TrustZone world
switching mechanism and pseudo-random cache replacement policies. The proof of concept
presented in the research [103] is a data exfiltration scenario and it is composed of a sender
that encodes a message and writes it accordingly to a shared cache and a receiver that
primes the cache beforehand and reads the message that was written from the sender.
The attack has two versions, the single-core, and the multi-core, with each of them being
applied to a different cache level. There is a L1 cache for each core of the CPU and it is not
shared by other cores, while the L2 cache is much larger and it is shared amongst all cores
(see Figure 13).
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We will first focus on the steps of the single-core scenario first. In the first step of the
attack, the receiver primes the cache by invalidating all its entries and loading specific data
to fill the entire L1 cache. After that, the control is given to the sender application in the
trusted world where it encodes the message to be sent and proceeds to invalidate entries
and write data to the L1 cache according to the encoded message. Then the normal world
takes back the control and counts the number of the cache accesses that happened during
the trusted world execution time and through that information it infers the message that
the sender application sent. The multi-core attack is quite similar as the only difference is
that the prime phase fills all the L1 and L2 caches while the sender writes its messages on
the L2 cache. It is obvious that the second attack is much more difficult to apply, as the L2
cache is a global cache and as such it will introduce noise from parallel applications that
execute in other cores.

The messages are encoded according to the number of cache accesses, for example if
the sender wanted to send the number 20 it might have been agreed that 40 cache accesses



Sensors 2021, 21, 520 26 of 46

should be made. To clear any noise on the channel, a method that the researchers named
“bucket” was used that practically is a more flexible decoder. If the decoder received a
number of cache accesses in the range of 40–50 then it would understand that the sender
intended to make just 40 accesses and translate that to the number 20.

The prime + count attack cannot be used as an as is attack to spy on the TrustZone, as
it is not able to access sensitive information and deduce the exact values that were written
to the cache. This attack is basically a proof of concept that there could be a side channel
established between the normal and the secure world just by encoding messages using the
number of cache accesses as a primitive. According to the research paper, the bandwidth
could be as high as 27 KB/s in the single-core scenario and 95 B/s in the cross-core scenario.

ARMageddon

In this work [12] there is a demonstration of how side channel attacks could be im-
plemented using only unprivileged applications. The researchers have presented effective
ways to apply many cache-based attacks like Flush + Reload (which is used in a similar
manner in [104]), Flush + Flush and Evict + Reload on commodity ARM based Android
devices. The main challenges that were tackled are the following:

The fact that the last level caches (L2 for ARM) of ARM-based CPUs are not inclusive.
That means that entries on lower levels of the cache are not guaranteed to also exist on
the last level caches that is shared amongst all the cores of the CPU. This fact introduces a
problem when cross-core attacks are to be made, as the last level shared cache is the only
means the attacker has available to access and manipulate data from other cores of the
CPU. The paper presents a novel way that exploits cache coherency protocols and transfers
between L1 and L2 in order to “patch” the last level cache non inclusiveness problem.

Furthermore, modern devices employ multiple CPUs on their design that do not
share a common cache between them. However, the cache coherency protocols are used
to fetch lines cache entries between different CPUs quicker than from the main memory.
The researchers exploited this design to mount attacks that are effective even in cross-
CPU environments.

Another problem was that most of the ARM CPUs do not support the flush command
on which the Flush + Reload and Flush + Flush attacks are based on. The researchers have
investigated over 4200 cache eviction strategies based on Rowhammer techniques in order
to find the best alternative for the missing flush command.

Additionally, ARM CPUs employ a pseudo-random cache replacement policy that
makes predicting which cache line will be replaced difficult. This fact produces needless
noise in the measurements of the cache during an attack. The researchers proposed a
methodology that reduces the effects of erroneous prediction of replaced lines in the overall
performance of the attacks they implemented.

Accurate timings of execution require access to functions that are only available to the
kernel, since the attack model that the researchers chose does not include a rooted device, they
had to find alternatives that provided timings that were capable to allow the attacks to happen.
They proposed three different solutions: a performance monitoring system call which was
available to the user-space, the POSIX function that returns the time and a dedicated function
developed by the attacker. All of those methods where successful in identifying cache hits
and misses and thus are viable for side channel attack implementations.

The presented attacks were made against three off the shelf devices with each one
having different CPU ARM-based architectures. They first created a sender and receiver
that utilized the attacks in order to pass messages and measure the throughput of their
implementation in a data exfiltration scenario. Their attacks had a minimum transmission
rate of 12.5 kbps and a maximum of 1140 kbps depending on the attack implementation
and the underlying hardware. Furthermore, they implemented actual attacks to spy on
other processes that use shared libraries of the system or android applications that run on
the android runtime ART. They have also shown classic attacks on cryptographic primitives
such as AES with a t-table implementation. Finally, they show that their attacks can also
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be applied over the boundaries of TrustZone although they implemented very simple
proof of concept attacks against it. This shows once again that the TrustZone technology
is susceptible to cache-based side channel attacks since the cache is shared amongst the
secure and the normal world.

Observation 10: The TrustZone TEE since it is implemented on top of the main
CPU and it does not utilize separate hardware, shares the cache of the CPU with the
normal world. This has created the possibility of side channel attacks which could produce
devastating attack vectors such as private key leakage.

TruSpy

The TruSpy attack [73,105] was the first that provided an actual proof of concept for
a cross world side channel attack. The researchers have presented two separate attacks
that both achieved to break the word separation barrier with each attack having different
privilege requirements in the normal world (i.e., kernel and user privileges). The kernel
privileged attack is easy to implement since the attacker will have access to the virtual-to-
physical mapping of the memory and highly accurate clock cycle timers that will enable
him to prime and probe the cache with ease and deploy the attack. On the other hand,
the user-space attack has no access to neither of the aforementioned functionalities, so
the researchers have proposed and implemented two replacements that although not as
accurate, can be used to carry out successful unprivileged attacks.

Both attacks are implemented as prime + probe cache attacks since it does not require
memory sharing between the attacking and the victim process. This attack consists of five
steps, first the attacker finds what memory addresses should be used for the priming of
the cache by working out the mapping from the virtual address space to cache sets. In
the second step the attacker fills the cache with its own memory so as to force any future
cache access attempts from the victim process to fail. This step is the prime phase that
will provide the attacker with a known state of the cache before he hands the execution
to the victim process. Moving forward, the victim process from the trusted world takes
over and changes the state of the cache during its execution which cannot be interrupted
due to the fact that it resides in the trusted world. During the fourth step, the attacking
process takes back control and measures the difference between the known cache state
and the new cache state after the execution of the victim process. The attacker then stores
the difference and proceeds to the second step again. The steps two to four are followed
in a loop until enough data are recorded. In the last step the collected data are analyzed
to recover any targeted secret information from the trusted world. The entire process is
depicted in Figure 14.
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3.3.2. Other Side-Channel Attacks

The main problem with side channel attacks is their temporal and spatial resolution
which are terms that define the granularity of the attack, that is, how detailed are the data
extracted from the attack. These resolutions practically define the performance and the
capability of an attack to extract the data required for the reconstruction of the targeted
secret. Cachegrab [106] is a tool specifically developed for optimizing side-channel attacks
against TEEs. This tool is designed to be analogous to an oscilloscope. It is capable of
collecting trace data on multiple cache structures per execution, similar to the probes on
an oscilloscope being connected to multiple contacts on a target board. With this tool,
researchers from nccgroup (production company of Cachegrab) where able to recover 224
and 256-bit ECDSA keys from a Nexus 5X device. [107] In this attack they utilized not only
the shared cache but also branch predictors to leak information about the nonce used in
the ECDSA encryption procedure that where enough to completely recover the private
key used.

Additionally, in [107] the researchers attacked implementations of AES-256 and AES-
256 GCM that were found within the TrustZone TEE of a Samsung Galaxy S6. The attack
followed the prime + probe method and through the usage of GPU parallelization in the
analysis phase, the keys were recovered in a matter of minutes. (8 min for AES-256 and
70 min for AES-256 GCM)

3.3.3. Fault Injection Attacks
Rowhammer on TrustZone (Electromagnetic)

In contrast with the previous side channel attacks that were based on the cache, the
rowhammer attack exploits the physical design of the RAM. This attack [108] aims to
induce errors to RAM entries within its capacitors by utilizing the fact that if many access
and write attempts are made to neighboring RAM capacitors, then the contents of the
target capacitor row can be altered. Like the name of the attack indicates, this attack cannot
be applied on a per RAM capacitor level, but on a RAM row level with each row being
composed of multiple capacitors. The attack is presented in Figure 15, where each RAM
module is composed of multiple RAM Banks with each one of them containing multiple
rows of RAM cell capacitors. The attacking rows are activated (and thus discharged) very
frequently in order for this attack to work, the discharging of the capacitors in the attacking
rows may cause the capacitors of the victim row to also discharge faster than normal. This
will ultimately lead to memory corruptions in the victim row within the RAM, something
that can affect RAM rows that contain TrustZone data, even if they are protected by the NS
bit mechanism.
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The attacker had to find a way to pinpoint the exact rows that were next to the desired
victim rows. He developed a program that accessed the RAM row by row and timed
each access attempt. Depending on this time he could deduce and map the entire RAM
in its banks and rows. The final step to overcome was to bypass the cache usage that
would cripple his attack as it would reduce the number of RAM activations frequency. This
was trivially bypassed by adding to his assumptions the ability to execute code in kernel
privileges that would disable the cache usage.
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The attacker targeted the RSA CRT implementation, which is susceptible to the Bellcore
attack, that existed in the TrustZone portion of the system. This attack is a differential
fault analysis attack that requires only one faulty signature to be entirely broken in a CRT
implementation, as long as no DFA countermeasures are in use. The attacker proceeded to
monitor the execution of the RSA CRT as it signed content and when the timing was right,
he began the attack. To that end, he developed a kernel module to specify the attacking
rows that he used in order to attack rows adjacent to the sensitive memory rows. After he
successfully corrupted the signature, it was easy to proceed to the next steps of the Bellcore
attack that ultimately fully exposed the private key of the RSA.

CLKscrew (Voltage and Frequency)

CLKscrew [10] is a fault attack that is based on a modern device feature that allows
software components to control CPU frequency and voltage for power management. By
pushing the CPU to its operational limits, faults are induced in the computations of sensitive
operations and through that, an attacker could obtain vital information for deducing
sensitive data used in these operations. This attack can be done remotely, since it is software
based and there is no need for physical access to the device. With a malicious kernel driver,
a low privileged application can induce CLKscrew and extract cryptographic keys from
inside the TrustZone TEE and can also manipulate the TrustZone trusted application
validation into accepting self-signed code.

In this particular demonstration, the Dynamic Voltage and Frequency Scaling (DVFS)
power management system is used to manipulate both the operating voltages and fre-
quencies of each thread of the CPU. With the use of the DVFS the CPU can be overclocked
and simultaneously undervolted in order to pass the fault inducing borders of the CPU.
The attack is possible due to the fact that there are no safeguards to protect the CPU from
operating in faulty frequency-voltage combinations and that hardware regulators operate
across the TEE separation, allowing the attack to take place even during the execution of
the trusted world. With faulty behavior frequency-voltage combinations identified the
attacker needs to be assured that the attack will not self-fault the malicious code or any
other non-targeted code. For that a custom kernel driver is used in order to bind the victim
thread to a specific core and all the other applications to the rest of the cores, removing thus
the threat of collateral damage during the attack. The kernel driver also disables interrupts
during the fault injection in order to avoid any context switch that could happen.

The attack preparation begins by clearing any cache residue since in the next steps
there will be use of a cache-based profiling to identify when the victim execution begins
(step 1). In the next step, the attacker profiles the execution of the victim thread to identify
a consistent point of execution just before the target code to be faulted, this point is
named “Timing Anchor” (steps 2, 3). In some attack scenarios the timing anchor is not
accurate enough and there will be a need to better fine tune the exact attack timing; this is
implemented by trapping the attacking thread in a no-op loop until a predefined amount
of time has passed by which the attack will start (step 4). During the attack, the frequency
of the victim core will be raised to a specific value for a specific amount of time and then
restore it to normal operating conditions (steps 5, 6) as shown in in Figure 16.
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The attacker using this technique has managed to attack an AES implementation
that he run in the trusted world. The application was a simple decryption tool that took
as input encrypted messages and replied with the decrypted plain text given a stored
secret key. By sending encrypted text to the application and inducing faults during specific
rounds of the AES decryption phase he managed to infer the AES secret key by using
a differential fault attack technique. The researchers have also been able to bypass the
firmware verification mechanism of the device secure boot mechanism. This mechanism
is an RSA based authentication that checked a signature on the hash of the firmware to
be loaded with a hardware bound secret key stored in the trusted world. The researchers
managed to fault the signature decryption process in order to force it to produce a hash
that is equal to the hash of their own firmware so that the verification mechanism will
accept this new firmware as a component signed by a trusted entity.

In a similar manner, VoltJockey [79], in an effort to additionally cover the tracks of
a DVFS based attack, generates faulty behavior by just manipulating the voltage of the
processor. This provides an increased difficulty due to the enforced restrictions which will
undoubtedly create fewer effective faults than CLKscrew, but the resulting attack will be
stealthier since the defender will not be able to detect the abnormal behavior by monitoring
the frequency of the CPU.

BADFET (Electromagnetic)

Like the CLKscrew, BADFET [76] is a fault attack, that employs electromagnetic radia-
tion to induce faults. Performing Electromagnetic Fault Injection (EMFI) attacks [109,110]
is considered more challenging nowadays, due to the increase in CPU speeds and decrease
of the component size in modern systems. BADFET proposes a solution, by defining the
second order EMFI attacks, that targets a new attack surface for the EMFI based attacks.
Instead of targeting the processor during sensitive operations, a second order EMFI attack,
can target any component that the processor utilizes during the target operation (the mem-
ory, the system bus, various controllers etc.). With this technique the spatial and temporal
resolution requirements are effectively reduced since the targeted components are less
dense and they store exploitable information for more time.

The attack described in the paper, consists of two phases, in the first stage the BADFET
platform is used to apply electromagnetic radiation on the RAM of the system (Cisco 8861
VoIP phone) during the boot in a specific time. A microcontroller is used to fine-tune the
timing and the position of the emitter to increase the effectiveness of the attack. The faults
induced in the memory, triggers a condition that exposes the debug CLI of the uBoot to
the attackers. In the second stage, with the CLI available, a buffer overflow based trusted
world vulnerability is found that allowed the researchers to attain read, write and execution
capabilities in the secure world. Finally, the researchers have obtained a new CLI that
run entirely in the secure world. This vulnerability exists due to the lack of user input
validation in the TEE and the exposure of a function that can trigger a world change in the
uBoot CLI.
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3.4. Attacks Overview and Comparison

Based on the presentation of each attack we created a comparative table that aims at
creating a synoptic view of each attack and what were the consequences with regards to the
GlobalPlatform’s Protection Profile objectives (as analyzed in Section 2.2). More specifically,
in the first column of Table 2 there is the name of each attack presented previously. In the
next five columns we defined basic primitives that the attacker achieved; namely: (i) read
for when trusted world memory reading was achieved, (ii) write for when trusted world
memory write was achieved, (iii) execute for when execution in the context of a trusted
application was achieved, (iv) kernel execute for when execution in the context of the
trusted world kernel and (v) information extraction for when actual sensitive information
was pulled from the trusted world. Depending on whether each primitive was achieved
in each attack we use a black-filled circle to indicate that the primitive was achieved, a
half-filled circle to indicate that the primitive can be trivially achieved but was not formally
documented on the report and a white circle to show that the primitive was not achieved
and to the best of our knowledge is hard to attain. In the final column, we specify the
GlobalPlatrform protection profile objectives violated by each attack.

The most common primitives achieved in the documented attacks are the read primi-
tive (21 achieved–3 possible), the write primitive (14 achieved–2 possible) and the informa-
tion extraction primitive (12 achieved–6 possible). This is an expected outcome given the
fact that reading and writing to memory is one of the most common initial pivots for attacks
and a relatively easier to achieve primitive; as for information extraction it is a logic next
step from the read primitive with side channel and fault injection attacks being the most
common attacks that achieved this primitive. The least achieved primitives are the execute
primitive (8 achieved–5 possible) and kernel execute primitive (7 achieved–4 possible).
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Table 2. A comparison of the analyzed attacks that showcases the methodology used, the primitives achieved, and the GlobalPlatform Protection Profile objectives violated by each attack.
The Kernel Normal World (KNW) mark shows that the primitive targets the kernel of the normal world. (# Not achieved
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Table 2. Cont.
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GlobalPlatform Protection Profile
Objectives Violated

Bypassing Secure Boot [89] Bad use of cryptography • •

Sensors 2021, 21, x FOR PEER REVIEW 31 of 45 
 

 

spatial and temporal resolution requirements are effectively reduced since the targeted 
components are less dense and they store exploitable information for more time. 

The attack described in the paper, consists of two phases, in the first stage the BAD-
FET platform is used to apply electromagnetic radiation on the RAM of the system (Cisco 
8861 VoIP phone) during the boot in a specific time. A microcontroller is used to fine-tune 
the timing and the position of the emitter to increase the effectiveness of the attack. The 
faults induced in the memory, triggers a condition that exposes the debug CLI of the uBoot 
to the attackers. In the second stage, with the CLI available, a buffer overflow based 
trusted world vulnerability is found that allowed the researchers to attain read, write and 
execution capabilities in the secure world. Finally, the researchers have obtained a new 
CLI that run entirely in the secure world. This vulnerability exists due to the lack of user 
input validation in the TEE and the exposure of a function that can trigger a world change 
in the uBoot CLI. 

3.4. Attacks Overview and Comparison 
Based on the presentation of each attack we created a comparative table that aims at 

creating a synoptic view of each attack and what were the consequences with regards to 
the GlobalPlatform’s Protection Profile objectives (as analyzed in Section 2.2). More spe-
cifically, in the first column of Table 2 there is the name of each attack presented previ-
ously. In the next five columns we defined basic primitives that the attacker achieved; 
namely: (i) read for when trusted world memory reading was achieved, (ii) write for when 
trusted world memory write was achieved, (iii) execute for when execution in the context 
of a trusted application was achieved, (iv) kernel execute for when execution in the context 
of the trusted world kernel and (v) information extraction for when actual sensitive infor-
mation was pulled from the trusted world. Depending on whether each primitive was 
achieved in each attack we use a black-filled circle to indicate that the primitive was 
achieved, a half-filled circle to indicate that the primitive can be trivially achieved but was 
not formally documented on the report and a white circle to show that the primitive was 
not achieved and to the best of our knowledge is hard to attain. In the final column, we 
specify the GlobalPlatrform protection profile objectives violated by each attack. 

Table 2. A comparison of the analyzed attacks that showcases the methodology used, the primitives achieved, and the 
GlobalPlatform Protection Profile objectives violated by each attack. The Kernel Normal World (KNW) mark shows that 
the primitive targets the kernel of the normal world. (○ Not achieved ◒ Not achieved but trivial ● Achieved). 

Attack Method Read Write Execute 
Kernel  
Execute 

Info  
Extraction 

GlobalPlatform Protection Profile 
Objectives Violated 

Bits Please 
1 [28,82] 

Logic Exploitation ○ ● ● ○ ○ 
O.OPERATION 

O.RUNTIME_INTEGRITY 
O.TA_ISOLATION 

Bits Please 
2 [71,83] 

Logic Exploita-
tion–Return Ori-
ented Program-

ming 

○ ● ● ● ◒ 

O.OPERATION 
O.RUNTIME_INTEGRITY 

O.TA_ISOLATION 
O.TEE_ISOLATION 

Bits Please 
3 [84] 

Logic Exploitation ● ● ● ● ● 

O.OPERATION 
O.RUNTIME_INTEGRITY 

O.TA_ISOLATION 
O.TEE_ISOLATION 

O.RUNTIME_CONFIDENTIALITY 
O.TEE_DATA_PROTECTION 

O.TRUSTED_STORAGE 

Sensors 2021, 21, x FOR PEER REVIEW 31 of 45 
 

 

spatial and temporal resolution requirements are effectively reduced since the targeted 
components are less dense and they store exploitable information for more time. 

The attack described in the paper, consists of two phases, in the first stage the BAD-
FET platform is used to apply electromagnetic radiation on the RAM of the system (Cisco 
8861 VoIP phone) during the boot in a specific time. A microcontroller is used to fine-tune 
the timing and the position of the emitter to increase the effectiveness of the attack. The 
faults induced in the memory, triggers a condition that exposes the debug CLI of the uBoot 
to the attackers. In the second stage, with the CLI available, a buffer overflow based 
trusted world vulnerability is found that allowed the researchers to attain read, write and 
execution capabilities in the secure world. Finally, the researchers have obtained a new 
CLI that run entirely in the secure world. This vulnerability exists due to the lack of user 
input validation in the TEE and the exposure of a function that can trigger a world change 
in the uBoot CLI. 

3.4. Attacks Overview and Comparison 
Based on the presentation of each attack we created a comparative table that aims at 

creating a synoptic view of each attack and what were the consequences with regards to 
the GlobalPlatform’s Protection Profile objectives (as analyzed in Section 2.2). More spe-
cifically, in the first column of Table 2 there is the name of each attack presented previ-
ously. In the next five columns we defined basic primitives that the attacker achieved; 
namely: (i) read for when trusted world memory reading was achieved, (ii) write for when 
trusted world memory write was achieved, (iii) execute for when execution in the context 
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spatial and temporal resolution requirements are effectively reduced since the targeted 
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spatial and temporal resolution requirements are effectively reduced since the targeted 
components are less dense and they store exploitable information for more time. 
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spatial and temporal resolution requirements are effectively reduced since the targeted 
components are less dense and they store exploitable information for more time. 

The attack described in the paper, consists of two phases, in the first stage the BAD-
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spatial and temporal resolution requirements are effectively reduced since the targeted 
components are less dense and they store exploitable information for more time. 
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the timing and the position of the emitter to increase the effectiveness of the attack. The 
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input validation in the TEE and the exposure of a function that can trigger a world change 
in the uBoot CLI. 

3.4. Attacks Overview and Comparison 
Based on the presentation of each attack we created a comparative table that aims at 

creating a synoptic view of each attack and what were the consequences with regards to 
the GlobalPlatform’s Protection Profile objectives (as analyzed in Section 2.2). More spe-
cifically, in the first column of Table 2 there is the name of each attack presented previ-
ously. In the next five columns we defined basic primitives that the attacker achieved; 
namely: (i) read for when trusted world memory reading was achieved, (ii) write for when 
trusted world memory write was achieved, (iii) execute for when execution in the context 
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spatial and temporal resolution requirements are effectively reduced since the targeted 
components are less dense and they store exploitable information for more time. 

The attack described in the paper, consists of two phases, in the first stage the BAD-
FET platform is used to apply electromagnetic radiation on the RAM of the system (Cisco 
8861 VoIP phone) during the boot in a specific time. A microcontroller is used to fine-tune 
the timing and the position of the emitter to increase the effectiveness of the attack. The 
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to the attackers. In the second stage, with the CLI available, a buffer overflow based 
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input validation in the TEE and the exposure of a function that can trigger a world change 
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namely: (i) read for when trusted world memory reading was achieved, (ii) write for when 
trusted world memory write was achieved, (iii) execute for when execution in the context 
of a trusted application was achieved, (iv) kernel execute for when execution in the context 
of the trusted world kernel and (v) information extraction for when actual sensitive infor-
mation was pulled from the trusted world. Depending on whether each primitive was 
achieved in each attack we use a black-filled circle to indicate that the primitive was 
achieved, a half-filled circle to indicate that the primitive can be trivially achieved but was 
not formally documented on the report and a white circle to show that the primitive was 
not achieved and to the best of our knowledge is hard to attain. In the final column, we 
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spatial and temporal resolution requirements are effectively reduced since the targeted 
components are less dense and they store exploitable information for more time. 

The attack described in the paper, consists of two phases, in the first stage the BAD-
FET platform is used to apply electromagnetic radiation on the RAM of the system (Cisco 
8861 VoIP phone) during the boot in a specific time. A microcontroller is used to fine-tune 
the timing and the position of the emitter to increase the effectiveness of the attack. The 
faults induced in the memory, triggers a condition that exposes the debug CLI of the uBoot 
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input validation in the TEE and the exposure of a function that can trigger a world change 
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creating a synoptic view of each attack and what were the consequences with regards to 
the GlobalPlatform’s Protection Profile objectives (as analyzed in Section 2.2). More spe-
cifically, in the first column of Table 2 there is the name of each attack presented previ-
ously. In the next five columns we defined basic primitives that the attacker achieved; 
namely: (i) read for when trusted world memory reading was achieved, (ii) write for when 
trusted world memory write was achieved, (iii) execute for when execution in the context 
of a trusted application was achieved, (iv) kernel execute for when execution in the context 
of the trusted world kernel and (v) information extraction for when actual sensitive infor-
mation was pulled from the trusted world. Depending on whether each primitive was 
achieved in each attack we use a black-filled circle to indicate that the primitive was 
achieved, a half-filled circle to indicate that the primitive can be trivially achieved but was 
not formally documented on the report and a white circle to show that the primitive was 
not achieved and to the best of our knowledge is hard to attain. In the final column, we 
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Table 2. Cont.
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Extraction

GlobalPlatform Protection Profile
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O.TRUSTED_STORAGE 

O.OPERATION
O.INITIALISATION

O.RUNTIME_INTEGRITY

Cache Timing Attack [75] Timing of access attempts to
the cache • # # # •

O.OPERATION
O.RUNTIME_CONFIDENTIALITY

O.TRUSTED_STORAGE

Prime + Count [103]
Timing of access attempts to

the cache with a known initial
state

• # # # •
O.OPERATION

O.RUNTIME_CONFIDENTIALITY
O.TRUSTED_STORAGE

ARMageddon [12]
Flush + Reload, Flush + Flush,
Evict + Reload cache timing

attacks
• # # # •

O.OPERATION
O.RUNTIME_CONFIDENTIALITY

O.TRUSTED_STORAGE

TruSpy [73,105] Prime + Probe cache timing
information exfiltration • # # # •

O.OPERATION
O.RUNTIME_CONFIDENTIALITY

O.TRUSTED_STORAGE

Cachegrab [106,107] Optimized Side Channel
Attack on TrustZone • # # # •

O.OPERATION
O.RUNTIME_CONFIDENTIALITY

O.TRUSTED_STORAGE

Rowhammer [108] RAM Fault Injection • # # # •
O.OPERATION

O.RUNTIME_CONFIDENTIALITY
O.TRUSTED_STORAGE

CLKscrew [10] Voltage & Frequency Based
Fault Injection • # # # •

O.OPERATION
O.RUNTIME_CONFIDENTIALITY

O.TRUSTED_STORAGE

VoltJockey [79] Voltage Based Fault Injection • # # # •
O.OPERATION

O.RUNTIME_CONFIDENTIALITY
O.TRUSTED_STORAGE

BADFET [76] Electromagnetic Fault
Injection • # # # •

O.OPERATION
O.RUNTIME_CONFIDENTIALITY

O.TRUSTED_STORAGE
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4. Discussion and Observations

A TrustZone TEE is a high-value target. It has a privileged standing point in the
context of access, due to its position in the architecture. It can conceal its state and data
from other non-privileged modes of the platform -normal world- and also hosts a number
of important services, whose security modification or compromise would be considered
crucial from an attacker’s perspective. For the above reasons, a TrustZone TEE makes for a
high-value target for someone with the required knowledge to exploit the weaknesses that
exist in current implementations.

Generally, an attacker with the ability to execute code in the context of the secure
world can fully compromise the system in various ways depending on the privileges he
has, while also have access to secrets stored within the secure world. As a normal trusted
application, he can access any resource that the trusted application might have access to:

• By using the secure world’s ability to map and write to all physical memory belonging
to the normal world, an attacker can modify the kernel of the normal OS, thus infecting
it even if no vulnerability is present in the normal world kernel.

• As the attacker has trusted application privileges, it can uncover any private data that
it may hold in its memory. Things like loaded keys, fingerprint data and other sensitive
information could be extracted, depending on which application is compromised.

Furthermore, an attacker that has kernel rights within TrustZone can manipulate
resources from other trusted applications as well as the integrity of the kernel and other
security parameters of the trusted world:

• Being able to access the secure file system available only to Secure World (SFS), he can
extract cryptographic keys and other important data like fingerprints that the normal
world is not privileged to access.

• The attacker’s ability to modify secure world memory gives him also the ability to
compromise the integrity of every Trusted application.

• Lastly, the potential to modify qFuses, the one-time-programmable (OTP) elements
that are used to enable and disable security and debug features is provided, thus
bypassing the secure boot sequence, or enabling other capabilities that the vendor has
chosen to disable on the platform.

Overall, the attack paths that an attacker could follow are depicted in Figure 17. Every
attack scenario begins from the normal world (1) which usually requires that the attacker
has kernel privileges in the OS. From there, the next step is either the SMC communication
channel (2–4) or the shared architectural components of the system (5–8). In the first case,
the attacker takes advantage of the escalated privileges and issues direct SMC calls that
allow him to probe the various trusted applications or the trusted OS directly so as to
discover any software exploitable bugs within the trusted code base. On the other case,
the shared CPU cache (5) or the shared RAM memory (6) or the shared CPU voltage and
frequency settings (7) are used to induce faults in secure TEE operations and to ultimately
expose information from the secure world through side channel analysis (8).
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4.1. SMC Exploitation

Most of the attacks against the TEE have a basic starting point in common; the
communication system between the two worlds. This system provides the largest attack
surface since the secure monitor calls (SMCs) provide a way for the user to pass potentially
malicious input to the TEE. Since there is no default message authentication mechanism
in TrustZone, an attacker with kernel privileges, can issue any custom SMC and perform
fuzzing and man in the middle attacks in order to discover flaws in the trusted world and
exploit them.

The communication starts from the normal world application that places arguments
in a shared memory or some specific registers and calls the TEE kernel driver to initialize a
world change. Then, the normal world kernel sends the required SMC which will make
the secure monitor give control to the TEE. In a normal case, the SMC is issued by a kernel
driver that will also authenticate the calling application, although if an attacker gains kernel
privileges he can issue his own SMCs utterly bypassing this authentication. After that,
the TEE processes the arguments provided and calls the trusted application to perform
the actions specified. Since the input is controlled by the attacker it can contain crafted
arguments that will be passed to the TEE, which has very limited mechanisms to verify the
validity of the message (at least in current implementations) aside from sanity checks that
many times fail to catch some malicious inputs. The TEE has no other option than to act
blindly, using the information provided in the message. Some might argue that there is
a way to verify the calling application by using the universally unique identifier (UUID),
but the UUID is part of the SMC, and as such, it can be replicated and consequently be
nullified as a security measure.

Another crucial aspect that arises from the above cases is that when an OEM/platform
designer extends a TEE with more services, the implementation of input validation mecha-
nisms on these added SMC calls are not always coherent and of the same quality as that
of the initial mechanisms designed by the TEE vendor [83]. From the above-published re-
search, we can see that the OEM/platform vendor can either copy the TEE designer model
of input sanitization or design their own validation checks on the implemented function
calls of the added Trusted applications. This second option has the drawback that the cho-
sen mechanisms may not address all scenarios of bad input, because of the non-expertise
of the developer in security design, expanding probabilistically an attacker’s ability to
execute arbitrary code in the context of the TEE, as can be seen from the presented attacks.

Another issue that arises from the fact that manufacturers extend the secure world with
new functionality is the dramatic increase in trusted code base. With the ever-increasing
need for secure applications, it is hard to strike a good balance between what part of an
application is implemented in the normal world and what in the secure world. This has
led to an expansion of the secure world since developers choose to implement more parts
of the application in the secure world, a fact that exposes it to greater danger since the
newly introduced code might contain new and unforeseen vulnerabilities which could be
exploited through the SMC mechanism.

This problem has been identified in [111] where the researchers have identified the
lack of a protection mechanism of the TrustZone communication system which could lead
to man-in-the middle, fuzzing and denial of service attacks. They proposed a scheme
which aims to alleviate this issue by restricting TrustZone access through access control
lists and by encrypting and authenticating the communication with session keys.

Concluding, a basic design flaw of the trusted execution environment is its commu-
nication system, although there can be some security measures within the normal world,
an attacker with root privileges can easily bypass them. There are some attacks that do
not employ this communication channel, such as the aforementioned side channel and
fault attacks, but the most widely documented method of attacking the TEE is through this
communication channel using malicious crafted SMCs.

Finally, it should be considered that SMC calls are not the only mechanism with the
ability to switch world context, thus not the only probable way of exploitation. Interrupt
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handling and bus signals from the corresponding controllers, shared memory interfaces
found on some designs and data parsing of intentionally corrupt disk content from eMMC
blocks are other possible avenues of exploitation, although no research has been published
indicating vulnerabilities through the above mechanisms yet.

4.2. Protection Mechanisms of Trusted OS

Something to consider also is the impact and importance of GlobalPlatform’s standard-
ization that most of the current implementations of TEEs are compliant with. According
to the official definition from GlobalPlatform: “The TEE is an execution environment that
runs alongside but isolated from the device main operating system. It protects its assets
against general software attacks. It can be implemented using multiple technologies, and
its level of security varies accordingly.” [26] Comparing the official definition with the
current situation we can deduce that problems in one of the crucial requirements exist. The
ability of TEEs to withstand attacks from exposing an interface to the normal OS, which
can be considered the most standard/general and the most exposed interface, is defective.
Furthermore, most TEE implementations lack basic internal security mechanisms such as
ASLRs and stack cookies [1,29].

Modern rich OS include a set of security mechanisms that increases the difficulty of
exploiting a software vulnerability. Furthermore, due to the closed nature of TEE OS, there
is no public information regarding the support of security mechanisms. A recent article
in [9] discovered that the two major TEE implementations (Qualcomm and Kinibi) have a
limited number of security features implemented. In particular, Kinibi offers no form of
ASLR and all trusted applications are loaded into a fixed address with Qualcomm TEEs
offering only a weak ASLR implementation. That is, the amount of entropy offered by
QSEE’s ASLR implementation is limited by the size of the contiguous range of memory
where trusted applications are loaded. According to [9], the ASLR enabled by QSEE is
limited approximately to 9 bits, which means that with 355 guesses, an attacker would
have a 50% chance of correctly guessing the base address of a trusted application image.
Another security mechanism called stack cookie, which prevents stack overflows has
been implemented in QSEE but not in Trustonic’s implementation. Finally, both QSEE
and Trustonic do no support guard pages (i.e., a security mechanism to separate various
memory segments and block overflows from one segment reaching to another segment).

A deduction from the above presented cases is that—at least on specific implemen-
tations as QSEE- the security boundary between Trusted applications and the TrustZone
kernel is weak [83]. When the attacker has managed to break through to the secure world
and has taken command of a Trusted application, the intermediate communication mecha-
nism between the Trusted applications and the TrustZone kernel is designed such a way
that no input validation takes place, thus allowing the attacker to compromise the kernel
and other Trusted applications with ease.

When this weak security implementation is combined with the increasing number of
trusted applications, it is apparent that the security of each one of these applications is com-
promised in an exploitation incident. This way, a need for a more effective solution arises
in order to maintain the security of each trusted application. In [91,112], the researchers
have identified this issue and they proposed a TEE virtualization (TEEv) architecture that
supports multiple isolated and restricted TEE instances running under the same CPU with
a minimal hypervisor. TEEv allows different TEE implementations to run in isolation on
the same smartphone and to host their own set of trusted applications. Coincidentally, a
compromised TEE in this architecture cannot affect its peers or the normal world. There
are many similar virtualization research solutions such as [113], PrOS [114], TrustICE [115],
vTZ [116] and Sacntuary [117].

4.3. Shared Resources

A crucial design flaw of all TEEs is the sharing of resources. TEEs were designed
to provide an ad hoc security mechanism that required very little hardware adjustments
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to work without the need of extra hardware to be installed on the device. That is the
reason why the CPU cores, the CPU caches, the storage, and the RAM of the device are all
resources that are shared between the secure and the non-secure worlds. There are strong
security mechanisms that protect the resources of each world such as the NS bit that taints
each message and memory entry as secure or non-secure. With the support of mechanisms
that enforce the NS bit policy, unauthorized entities cannot access sensitive resources, but
although this architecture might seem sound, it does not account for side channel attacks.

As we have seen, the fact that these resources are shared between the two worlds
has led to serious side channel vulnerabilities. These attacks range from basic sender and
receiver side channels that can be used to secretly transfer data from one world to another,
all the way to spying attacks that can steal sensitive data from trusted applications during
their execution. That is why manufacturers should either reserve dedicated hardware for
the TEE, something that will increase the production costs, or implement mechanisms that
scramble the data that the side channel attacks collect [118,119], rendering them unusable.
The latter method is the least expensive, but it includes the risk that it might not catch all
attack cases, in contrast, the first method is expensive (due to the need for extra hardware)
but it provides assurances that the data are safe from shared resource side channel attacks.

Furthermore, just separating the hardware resources is not enough, as there are other
side channel attacks that are not based on this architectural design. These side channel
attacks are based on external physical measurements or manipulations of the device that
the manufacturers cannot shield against. In this case, the only possible solution is through
the software, that should be hardened in order to not leak sensitive data. More specifically,
the software should be optimized to have fixed power consumption and runtime execution
regardless of the configuration of the targeted application. This will be able to protect
against passive side channel attacks that only measure these specific characteristics of each
execution. Finally, the software should also be hardened against hardware fault injections
that could lead to exposing secret data.

4.4. Other Issues

Another very important aspect we should consider is the closed source nature of
TEE implementations. Most designs are not public, resulting in an architecture that is
not analyzed in an open manner for security defects. This closed box design and the
non-disclosure agreement policies that follow it, hinders the ability of security researchers
to investigate the products for existing vulnerabilities [120]. Only recently has Qualcomm
released the specifications for the Qualcomm TEE secure boot procedure and trusted
application image authentication.

A TEE should provide assurance based on its secure design (verified microkernel,
isolation between tasks, secure input validation, overflow protection etc.) and by hardware
mechanisms that provide the ability to isolate its state from “external” sources, like code
running in the REE. From the presented cases we can see that the design of the most
widespread implementation in not optimally secured, allowing for exploitation primitives
that can totally break the security design.

4.5. Solutions and Future Work

Given the severe security issues we have identified and analyzed, here we propose a
set of possible solutions and improvements that could be adopted in TEE implementations
so as to increase their security and ultimately mitigate to the highest possible degree the
vulnerabilities we presented. Once again, we follow our vulnerability categorization to
highlight the solutions that we propose for each type of vulnerability refereeing to Figure
17 when required.

4.5.1. Solutions for Software Vulnerabilities

When it comes to software attacks, the main identified issues are entirely based
on basic software attacks (control flow graph manipulation through buffer overflows,
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malformed input etc.). Developers of trusted applications should be careful to maintain
secure and bug-free code that does exactly what it is supposed to do, this can be achieved
by keeping the trusted code base at the minimum, effectively reducing the chance that a
bug will exist and making the debugging process easier. The solution here is identical to
common software security development procedures that includes (i) integration of secure
software development lifecycle functions such as static and dynamic code analysis, fuzzing
etc. and (ii) open sourcing security critical software so as to allow close scrutiny of the
source code from a wider range of experts.

Furthermore, as identified in [9], common TrustZone-based TEEs lack common OS-
level security techniques (ASLR, stack canaries etc.) which allows software exploitation
to manifest in vulnerable binaries, something that can be avoided if TEE implementors
add these techniques to their solutions. In addition, drivers and software proxies that
communicate with the TEE must properly sanitize all requests, authenticate, and verify the
senders of these requests. These entities are the gatekeepers to the secure world and the
first line of defense against attackers, that is why TEE implementors should pay attention
to secure these elements in order to mitigate the largest attack surface against the TEE.
This of course needs further research so as to compare the computational overhead in
comparison to the additional security provided. The aforementioned solutions aim to
fortify the “Trusted Application” and the (4) attack path of Figure 17.

4.5.2. Solution for Architectural Vulnerabilities

The architectural vulnerabilities stem from the building block concepts of common
TrustZone TEE implementation with a central part being the SMC communication channel
witch attackers use to gain probing capabilities to the internals of the TEE that allows them
to gain an initial foothold within the secure world. As proposed in [113], an authenticated
and encrypted channel will provide an additional layer of security to the SMC communica-
tions and prevent arbitrary SMC usage from kernel-privileged users. This of course only
locks the door with better security and does not solve the software vulnerabilities that the
attackers use to exploit the trusted applications (see Solutions for software vulnerabilities).
On the other hand, there is a wide array of other architectural vulnerabilities (such as the
downgrade attack) which are rooted in OS-level logic problems and unused TEE features.
These issues can only be solved through more detailed and coherent implementation and
usage of the TEEs in terms of security and bug searching. Once again, open sourcing parts
of or entire TEE implementations will allow the code base to be thoroughly checked for
issues by a wider array of experts. These solutions aim to secure the “Trusted OS” as well
as the (2), (3) and (4) attack paths of Figure 17.

4.5.3. Solution for Side Channel Vulnerabilities

Side channel attacks are enabled by the fact that the secure and normal world share
common resources (CPU, cache, and RAM) which allow attackers to inject faults while also
measuring execution times, power consumed and cache/RAM usage. As we have seen
(Section 4.3) this core issue can only be solved by either adopting side channel resistant
cryptographic algorithms (with constant execution times and constant power consumption)
or changing the state of the shared resources by separating them (as in different hardware
chips) or by changing how they work by introducing random noise that can halt these
attacks [121,122]. Choosing the optimal solution is a research topic that we propose and
will require the cost/benefit analysis of adding new hardware to a SoC or having higher
overhead side-channel-resistant algorithms. Furthermore, detection of side channel attack
attempts is possible by orchestrating the shared CPU performance counters which are able
to identify the number of cache-misses; a number that will spike during the attack. With
this detection mechanism, the execution can stop when attacks are identified and thwart
the attempt [123]. These solutions will block the attack paths (5–8) of Figure 17.

Finally, a more generic guideline is that all TEE implementations should be made
open to be publicly evaluated and improved. As it is widely recognized, security systems
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should be secure by design and not through the obscurity of their implementation. ARM
TrustZone is no exception and the industry should avoid relying on the secrecy of the
design or implementation as the main method of providing security.

4.6. Future Directions

In this section we present the identified research directions. More specifically, in light
of our analysis, we believe that the future work in this area should deal with one or more
of the following research issues:

• Currently there is no formal threat model for the TrustZone TEE. This kind of model
would greatly benefit the development and security research of future TEEs as it will
set the focus on the most important security threats that a TEE can be affected by.

• More tools are required to evaluate TEE implementations and discover security bugs.
For example, custom fuzzers [42] (model based or coverage guided) and static analysis
tools aware of TEE protocols that will be able to adapt to the unique requirements of
secure-normal world communication. Another possible method is the use of symbolic
execution for trusted applications such as [124] or dynamic analysis such as [125].

• As Cortex-M architecture has been optimized for low-power devices such as IoT, the
underlying mechanisms of TrustZone technology for Cortex-M and Cortex-A proces-
sors are different. Therefore, research efforts must focus also on TEE implementations
built for TrustZone Cortex-M variant such as [126].

• Development and widespread availability of TrustZone based hardware platforms is
a crucial parameter (for both Cortex-A and Cortex-M) that will allow researchers to
evaluate various TEE implementations.

• Security is not the only aspect of TrustZone which requires attention. More works such
as [127] are required to investigate TrustZone performance-wise and energy-wise.

• Research efforts should focus on reducing the TCB size of the TEE OS and the optimal
distribution of functionalities between the trusted and normal world applications.

• The security of the communication between various parts of a heterogeneous SoC is
crucial. That is, novel solutions for the authentication and security of the communica-
tion channel between the secure and normal world should be investigated.

• A common use of TrustZone technology is data security such as DRM. However,
the powerful capabilities of TEE technology can be leveraged to enable many more
interesting privacy-enhancing solutions. Notable cases are the development of Private
Contact Tracing (PCT) (e.g., to track COVID-19 contacts) [128] and privacy preserving
machine learning at the level of devices [129]. More work is required to unleash the
potential of TrustZone and showcase more interesting application scenarios.

• Further investigations for underlying TEE vulnerabilities that are not based on trusted
application vulnerabilities but on architectural issues of TEEs could shed light on how
the TEE isolated environment could be better secured and also showcase its limitations.
An example of such a research [130] implements vulnerable trusted applications that
are exploited through memory corruptions on the OP-TEE platform.

5. Conclusions

From 2013 and on, research has surfaced that proves that the current implementa-
tions of ARM TrustZone implementations are not immune from attacks. The aim of this
paper was to provide an analytical and educational analysis of TrustZone-based TEE vul-
nerabilities and related attacks. To this end, we created a taxonomy that divided them
into three generic categories: (a) software, (b) architectural and (c) hardware attacks. We
elaborated on each attack category focusing on subtle details that are important for the
understanding of these attacks. Some of the presented exploits were highly complex and
required skillful attackers (such as extraction of Master keys), while other ones (such as
the downgrade attack) were rather trivial. Regardless of their complexity, all presented
attacks are real-world with practical impact on the security of the underlying device. We
conducted a root cause analysis of the said vulnerabilities to discover the underlying causes
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and pinpoint the nature of the security flaws. Our conjecture is that TrustZone based TEEs
can be considered as still immature due to the previous evidence. However, they are a
step to the right direction, with the TrustZone technology providing all the tools needed to
develop a secure environment for next generation sensor and IoT networks. Most critically,
this work showed that a more open and mature approach must be evaluated, with a more
detailed attention to their design from the perspective of security.
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