
 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

1 

 

 
 

 

 

 

 

                                                                                                
IdeNtity verifiCatiOn with privacy-preservinG credeNtIals for anonymous 

access To Online services 

 
WP5 – Advanced User Interface / User Experience (UI/UX) Artificial Intelligence 

 (AI)-based assistant 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based assistant pipeline” 

 

 

 

 

 

 

 

  

Marie Sklodowska Curie,  

Research and Innovation Staff 

Exchange (RISE)       

 

Editor(s): UPRC 

Author(s): Kostantinos Papadamou (ESR, CUT - secondee), Markos 

Charalambous (CUT - outside secondment), Evangelos 

Kotsifakos (ER, LST - outside secondment), George 

Kalatzantonakis (ESR, LST secondee), Christos Xenakis 

(ER, UPRC - outside secondment), Carlos Segura (TID – 

outside secondment), Anastasia Tsiota (ESR, UPRC - 

secondee), Angeliki Panou (ESR, UPRC - outside 

secondment), Nikolaos Episkopos (TS, FOGUS – 

secondee) 

Dissemination Level: Public 

Nature: Report 

Version: 2.0 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

2 

 

 

Project Profile  

Contract Number 824015 

Acronym INCOGNITO 

Title IdeNtity verifiCatiOn with privacy-preservinG credeNtIals for anonymous access 

To Online services  

Start Date Jan 1st, 2019 

Duration 48 Months 

 

 

Partners 

 

TECHNOLOGIKO 

PANEPISTIMIO KYPROU 

(BEN2, CUT) 

Cyprus 

 

 

  University of Piraeus research 

center (BEN1, UPRC) 

 

 

 

Greece 

 

Certsign SA (BEN3, CSGN) Romania 

 

Telefonica Investigacion Y 

Desarrollo SA (BEN6, TID) 
Spain 

 

 

LSTech Espana SL (BEN4, LST) 

 

Spain 

 

FOGUS INNOVATIONS & 

SERVICES P.C. (BEN7, FOG) 
Greece 

 
Document History 

 
VERSIONS 

Version Date Author  Remarks 

0.1 03/03/2020 
Kostantinos Papadamou (CUT),  

Anastasia Tsiota (UPRC) 
Executive Summary and Table of Contents 

0.2 04/05/2020 Kostantinos Papadamou (CUT) Introduction, draft sections 

0.3 10/07/2020 
Evangelos Kotsifakos (LST), 

Konstantinos Papadamou 
TOC revision 

0.4 31/07/2020 

Markos Charalambous (CUT), 

Christos Xenakis, Angeliki Panou 

(UPRC) 

Section 2 initial text 

0.5 10/09/2020 
George Kalatzantonakis (LST), 

Carlos Segura (TID), Nikolaos 
Section 4 updates 

 

 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

3 

 

Episkopos (FOGUS), Anastasia 

Tsiota (UPRC) 

0.6 1/10/2020 

Konstantinos Papadamou (CUT), 

Markos Charalambous (CUT), 

Evangelos Kotsifakos (LST), 

Anastasia Tsiota (UPRC) 

Section 3 text. 

0.7 15/11/2020 

Konstantinos Papadamou (CUT), 

Markos Charalambous (CUT), 

Evangelos Kotsifakos (LST), 

Carlos Segura (TID) 

Deliverable review and updates 

0.8 20/12/2020 

Konstantinos Papadamou (CUT), 

Markos Charalambous (CUT), 

Evangelos Kotsifakos (LST), 

Carlos Segura (TID) 

Deliverable review and updates, complete 

missing sections 

1 30/12/2020 

Markos Charalambous (CUT), 

Evangelos Kotsifakos (LST), 

Anastasia Tsiota (UPRC) 

Final version  

2 22/01/2021 
Vaios Bloulgouras (UPRC), 

Evangelos Kotsifakos (LST) 
Version 2, comments from EU 

 

Contract delivery due date: 31/12/2020 (M24) 

Actual delivery date of version n.1: 31/12/2020 (M24) 

Actual delivery date of version n.2: 22/01/2021 (M25) 

 

 

Fellow ID Name/Surname Researcher 

category 
Declaration No. PM 

12 Kostantinos Papadamou ESR 10 3 

22 Nikolaos Episkopos TS 19 2 

15 Anastasia Tsiota ESR 12 5.42 

14 George Kalatzantonakis ESR 14 3 
 

 

 

  



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

4 

 

Executive Summary 
In this first Deliverable of Work Package 5, we tackled the WP5 objectives from Task 5.1. More 

specifically, we present the first design of the INCOGNITO AI-based assistant, its architecture 

and an Natural Language Understanding pipeline, which will be utilized when users interact with 

the assistant and require help to be provided. We present the basic concepts of Machine learning 

and AI-assistants, the state-of-the-art in the area, based on the experience of our secondees and 

their related research. The secondees have studied the various options for implementing such 

assistants that act as chatbots to provide a conversational interaction with the users. The outcome 

of this research is described in this document, along with comparison of the various 

implementation options. We choose to use the RASA framework as it is the most advanced and 

popular with a lot of community support, tailoring it to address the needs of INCOGNITO. The 

integration of this framework to our INCOGNITO architecture is also presented in this document. 

A related research has being carried out for the User Interface, whether it is on a Web or Android 

app. We will be based on existing implementations to build our assistant. 

 

Through the research of the task T5.1 of the INCOGNITO project, that resulted also in this 

document, the involved secondees had the chance to learn a lot on the emerging technology of the 

AI-assistants, that is being adopted by all the big companies that need to have a natural 

conversational interaction with their customers for supporting them with their inquiries. This 

knowledge will give the secondees the skills to develop such technologies and make them 

competitive in the respective market. The outcomes of this research will be presented in future 

presentations in events and workshop that will be organized by the project and we will put efforts 

towards related scientific publications as soon as this research will lead to experimental results. 

Related news posts and articles will also be presented through the dissemination channels of the 

project. 
 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

5 

 

Table of Contents 

Executive Summary .............................................................................................................................. 4 

Table of Contents ................................................................................................................................... 5 

Table of Figures ..................................................................................................................................... 6 

1 Introduction ................................................................................................................................... 7 

2 Machine learning and Chatbots ............................................................................................... 8 
2.1 Dialogue System ............................................................................................................ 11 

2.1.1 Natural Language Understanding ........................................................................... 11 
2.1.2 Dialogue Manager ................................................................................................... 12 

2.1.3 Natural Language Generation ................................................................................. 12 
2.2 Chatbots / AI Assistants ................................................................................................. 13 

2.2.1 Chatito/Chatette ...................................................................................................... 13 
2.2.2 Rasa ......................................................................................................................... 15 

3 Advanced User Experience Artificial Intelligence (AI)-based Assistant 
Architectural Design and Specifications ..................................................................................... 15 

3.1 AI-based Assistant Technical Specifications - User Actions ......................................... 15 
3.2 Architectural design and the Identity Consolidator........................................................ 17 

3.2.1 Interaction with other INCOGNITO modules within the IDC ............................... 17 
3.3 User Device .................................................................................................................... 18 

3.3.1 User Interface/User Experience .............................................................................. 18 

4 Natural Language Understanding Pipeline ....................................................................... 23 

4.1 Rasa Architecture ........................................................................................................... 23 

4.2 Important concepts: ....................................................................................................... 25 

4.3 NLU files .......................................................................................................................... 26 

5 Conclusions ................................................................................................................................... 34 

6 References ..................................................................................................................................... 34 
 
 

  



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

6 

 

 
Table of Figures 

 
Figure 1: Overall architecture of task-oriented dialogue system .................................................. 11 
Figure 2: Chatito word feed .......................................................................................................... 14 
Figure 3: Chatito output ................................................................................................................ 15 
Figure 4. AI-based Assistant interaction with other modules of the Identity Consolidator ......... 18 

Figure 5: Rasa Architecture .......................................................................................................... 24 
Figure 6: RASA internal and external interaction and data flow .................................................. 25 
Figure 7: RASA internal processing flow ..................................................................................... 26 
Figure 8: Rasa Core High Level Architecture .............................................................................. 30 

Figure 9: Conversational path example of a story ........................................................................ 32 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

7 

 

1 Introduction 
The purpose of this deliverable D5.1 "Specification and initial design of the Advanced User 

Experience/User Interface (UI/UX) Artificial Intelligence (AI)-based assistant pipeline" is to 

provide the first stage design of the architectural components, the machine learning pipeline and 

their respective modules within the INCOGNITO platform that will support the functionalities that 

the AI-based assistant running on the Identity Consolidator web and mobile interfaces will offer 

to the INCOGNITO users.  

 

The developed components and user-interfaces aim to offer to the users a first-of-its kind user-

friendly AI-based Assistant that will be responsible to guide and inform the end-users about 

aspects of their identity and any possible actions that they should take in order to securely manage 

their identity while preserving their privacy. Among others, the AI-based assistant will be able to 

inform the users about the following aspects of privacy and identity management: a) users will be 

informed about the minimum identity attributes required to be revealed in order to access a specific 

Service Provider and subsequently get access to its resources; b) users will be informed and request 

for the de-anonymization risks as a result of revealing specific identity attributes to a Service 

Provider; c) users will be able to see the result of stop sharing specific identity attributes with 

identity attributes; d) users will be able to manage, delete, and/or create UMA policies associated 

with specific identity attributes that need to shared or are already shared with specific Service 

Providers; and e) using the AI-based assistant users should be able to know on-demand what 

Service Providers can be accessed when specific identity attributes are shared by default. 

 

In this deliverable we provide a detailed description of the design and implementation of the 

natural language understanding pipeline that has been implemented leveraging state-of-the-art 

Natural Language Processing (NLP) techniques, as well as the RasaHQ1 framework (Inc, 2020), 

which is an open-source machine learning framework that provides tools for developers to build, 

improve and deploy text- and voice-based chatbots and assistants. RasaHQ will be leveraged and 

we will built on top of it in order to implement a back-end component running on the Identity 

Consolidator of the INCOGNITO platform that is able to understand, handle, and respond 

accordingly to all the identity- and privacy-related management queries that the INCOGNITO 

users send in textual format using the developed desktop and mobile User Interfaces (UI) that will 

be developed as part of the user interface of the web application of the Identity Consolidator and 

the INCOGNITO mobile application. 

 

The rest of the document includes an analysis of the state-of-the-art in machine learning and 

chatbots, the dialogue systems that allows humans interact with the computer in a natural 

conversation. Basic background about Natural Language Understanding and processing is 

presented, and we also present the description of the specification and design of the AI-based 

assistant as well as the state-of-the-art solutions and technologies that we found and analyzed in 

order to decide which ones will be used for the development of the AI-based assistant of the 

INCOGNITO platform. 

 

 
1 https://github.com/RasaHQ  

https://github.com/RasaHQ


 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

8 

 

2 Machine learning and Chatbots  
 

Recent advances in Machine Learning and Natural Language Understanding are making possible 

the implementation of human-machine interaction systems that are driven by means of natural 

language conversations. These systems, commonly referred to as chatbots, have been recently 

gaining popularity in different mobile and online platforms. Their main objective is to serve as 

"virtual assistants" to support informational and transactional user requirements in a wide variety 

of domains and sectors. 

 

Natural Language Processing (NLP) is a subfield of artificial intelligence that allows the machine 

to understand natural language processing. Moreover, language modelling is a method of 

predicting the next word in a text given the previous statements. 

 

Several studies in this field present techniques that enhance the NLP. The table below shows the 

scientific publications in the recent years with their significant findings. 

 

 

Author Year Ref Significant Findings 

D.E. Rumelhart 1986 [1] Back-propagation 

J.Elman 1990 [2] Vanilla Recurrent Neural Networks (RNNs) 

Kneser and Ney 1995 [3] M-gram language modeling 

R. Caruana 1997 [4] Multitask Learning 

Y.Bengio et al. 2003 [5] Neural Probabilistic Language Model 

Mikolov et al. 2010 [6] Recurrent Neural Networks (RNNs) 

R.Collobert et al. 2011 [7] Neural network architecture and learning algorithm 

for NLP 

Milikov et al. 2011 [8] Combination of advanced language modeling 
techniques 

Mikolov et al. 2013 [9] Bag-of-Words model and Continuous Skip-gram 

model 

Graves et al. 2013 [10] Long Short-Term Memory networks (LSTMs) 

I.Sutskever et al. 2014 [11] Sequence to sequence learning with neural networks 

M. Luong et al. 2015 [12] Global and local approaches in attention mechanism 

A.Kannan et al. 2016 [13] Smart Reply 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

9 

 

Hideya Mino et al. 2017 [14] Neural Machine Translation (NMT) with a key-

value attention mechanism on the source-side 

encoder 

A.Kuncoro et al. 2018 [15] Advantages of Modeling Structure from LSTMs 

T. Blevins 2018 [16] Deep RNNs Encode Soft Hierarchical Syntax 

X.Qui et al. 2020 [17] Survey of pre-trained models for NLP 

 

Table 1: Overview of NLP related studies 

 

Many of the techniques presented in Table 1 were proposed in all aspects of NLP. The most 

significant methods used in NLP are multi-tasking, word embeddings, neural networks, sequence-

to-sequence, attention, memory-based networks, pretrained language models and reinforcement 

learning.  

 

The author of the paper [4] presented an algorithm and results for multitask learning in different 

ways by proving the method. Thus, the method can be applied to many different kinds of domains 

and can be used with different learning algorithms as well as real-world problems. Moreover, 

multitasking is the core to many papers like [7] were the authors proposed a neural network 

architecture and learning algorithm that can be applied to many natural language processing tasks. 

 

With the progress of machine learning techniques in recent years, it has become possible to train 

more complex models on much larger data sets and outperform the simple models. For example 

[5], [8]. Word-embeddings has been improved by T.Mikolov et al. [9] by proposing two novel 

model architectures: a) Bag-of-Words model and b) Continuous Skip-gram model. The result from 

those models have been compared with previous models and outperformed in accuracy and 

computational cost. 

 

Furthermore, NLP has improved by using neural networks and are categorized to recurrent neural 

networks (RNNs), convolutional neural network (CNNs) and recursive neural networks. All 

methods use a unique architecture and approach and can be used in NLP. 

 

Sequence to sequence learning is another approach which can be used in NLP with neural network. 

It was proposed from I. Sutskever et al. [11]. This method is about training models to convert 

sequences from one domain (for example, sentences in Spanish) to sequences in another domain 

(for example, the same sentences translated to English). 

 

Attention is a method that has lately been used to improve neural machine translation (NMT). It 

was introduced by M.Luong et al. [12] with two simple and effective classes of attention 

mechanism, first the local and global attention approach. This model using different attention 

architecture yields a new state of the art result in English to German translation. 

 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

10 

 

Based on attention mechanisms researchers approach various studies on memory-based networks. 

Models differ in how they implement and leverage the memory. 

 

Last but not least, pretrained language models has brought NLP in a new era [17]. The biggest 

advantage of pretrained language models are the usage of textual encoders and pre-trained tasks. 

Pre-trained tasks are categorized to a) Supervised learning b) Unsupervised learning and c) Self 

supervised learning. All those methods help learning with less data. Some examples of pretrained 

language models are 1) GloVe2 and 2) FastText3 ,etc.  

 
2 https://nlp.stanford.edu/projects/glove/ 
3 https://fasttext.cc 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

11 

 

 

2.1 Dialogue System 
 

In the recent years the advent of the conversational agents is obvious. In our everyday life we can 

use conversational agents like Alexa4, Google Assistant5 or Siri6 to help us to answer questions, 

make recommendations, and perform actions by delegating requests to a set of Internet services.  

A dialogue system, or conversational agent (CA), is a computer system intended to converse with 

a human. Dialogue systems employed one or more of text, speech, graphics, haptics, gestures, and 

other modes for communication on both the input and output channel.7 
 

 
 

Figure 1: Overall architecture of task-oriented dialogue system 

  

The typical architecture of a dialogue system is demonstrated in Figure 1. 

It consists of three main components: 

• Language Understanding: Is the block in charge of understanding users’ input, predicting 

what is the users’ intent and parsing an input sentence into predefined semantic slots. 

• Dialogue Manager: It manages the dialogue history, keeping an internal state of the 

dialogue from which decides what action will it take next. 

• Natural Language Generation (NLG): It translates the selected agent’s action into a natural 

response to the user, combining information from semantic slots and external information. 

 

2.1.1 Natural Language Understanding  
 

Given an utterance, the main objective of the Natural Language Understanding component is to 

extract three main pieces of information. The first task is the domain identification: this block is 

 
4 https://en.wikipedia.org/wiki/Amazon_Alexa 
5 https://en.wikipedia.org/wiki/Google_Assistant 
6 https://en.wikipedia.org/wiki/Siri 
7 https://en.wikipedia.org/wiki/Dialogue_system 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

12 

 

in charge of predicting if a user is talking about booking a restaurant, setting an alarm or controlling 

the TV. This block is only needed for multi-domain dialogue systems.  

  

The second part is user intent classification, that consists of extracting the purpose or goal of the 

utterance, basically a classifier that categorizes it into a set of predefined intents. For both the 

domain and intent classification Deep Learning techniques have been applied [18], [19]. In 

particular, neural models based on CNN [20], LSTM [21] and more recently Transformer-based 

[22] neural models are applied. 

  

Finally, the slot filling component assigns semantic labels to particular words and fillers that the 

user intends the system. For instance, when a user queries for a flight, key slots for 

origin/destination and preferred time are required for a dialog system to retrieve the appropriate 

information. This part is a very challenging problem for NLU and is usually defined as a sequence 

labelling problem, where the input are the words of the utterance and the output is the sequence of 

name entities and slots for the corresponding words. Although CRFs [23] and LSTM [24] work 

relatively well for small databases, now the trend is using BERT models to jointly estimate the 

intent and the slot filling [25]. 

  

2.1.2 Dialogue Manager 
 

The Dialogue Manager is usually composed of two main components, the Dialogue State Tracker 

and Dialogue Policy.  

  

The Dialogue State Tracker is needed in order to add robustness into the dialogue system. A 

dialogue state represents a dialogue session at any instant of the conversation and it usually 

contains a history of all previous turns and keeps a belief of current slots and intents. Deep-learning 

based approaches have achieved state of the art performance on dialogue state tracking tasks. The 

most common approach consists of estimating the dialogue state as a distribution over all possible 

slot-values [26], [27] whereas [28] proposed a Neural Belief Tracker to detect the slot-value pairs. 

 

The Dialogue Policy is the main AI component of the system. The Dialogue policy learns the next 

most likely action to take, conditioned on the state representation of the DST. The policy can be 

rule based or learnt either supervised or by using reinforcement learning [29]. In the latter, 

reinforcement learning can be used to discover policies that that optimize an objective performance 

measure, like reducing the number of turns to complete a task and maintaining a high user 

satisfaction index. 

 

2.1.3 Natural Language Generation 
  

The Natural Language Generation Component converts an action provided by the Dialogue Policy 

into a natural language utterance to the user.  A very good summary on the task of task of NLG 

can be found in [30]. The most common approaches to NLG nowadays consist of LSTM [31] and 

Transformer-based [32], [33] models. 

  



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

13 

 

 

2.2 Chatbots / AI Assistants 
 

Chatbots are programs, utilized by users to interact with information systems in an intuitive 

manner, using natural ways of communication, like texting or talking. AI assistants are based on 

the same principles, offering help to the users whenever it is needed. Such solutions vary regarding 

the intelligence level of the assistants, which may settle for simply answering FAQs, or extend 

their capabilities well beyond that point, by resolving issues users face when using the platform. 

More specifically, because of the augmented capabilities and functionalities offered to the users 

from the combination of modern hardware and software application, the level of complexity 

regarding the choices one is able to make while using such a system, are quite complicated. AI 

assistants offer a solution to this problem, by simplifying the process and making it possible for 

the users to just make an inquiry regarding the actions they need to take.  

The AI assistants are based on certain technologies that allow them to offer their services to the 

users whenever it is required. The main pillars are related to the interaction methods with the users; 

if a user utilizes his voice to interact with the assistant, then an Automatic Speech Recognition 

(ASR) technology is being employed. After that initial step, the methodology followed is the same 

with the text input, i.e., NLP is utilized to understand what the user needs. Usually assistants 

respond through written text, or vocally. In a later case, Text to Speech (TTS) tools are required. 

 

2.2.1 Chatito/Chatette 
 

Chatito8 is a Domain Specific Language (DSL) tool, which aims to be used in order to generate 

datasets that are required for the training of NLP models, like Rasa. In essence, with Chatito 

developers are given the ability to automatically simulate user input. NLPs take simple and 

unstructured human language and extract structured data in the form of intents and entities.  

 

Intents can be pictured as labels attached to the user’s input based on the overall goal of the 

corresponding message. For example: 

• User input: Hello! 

Intent: greet, 95% 

 

Entities are pieces of information that an assistant may need in a certain context. For example: 

User input: Hello! My name is Jane Doe. 

Intent: greet, 98% 

Entities: 

 Name: Jane Doe 

 

Chatito receives as input categorized keywords, which afterwards uses to construct grammatically 

and syntactically correct sentences.  

 

 
8 https://rodrigopivi.github.io/Chatito/ 

https://github.com/rodrigopivi/Chatito 

https://rodrigopivi.github.io/Chatito/


 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

14 

 

 
 

Figure 2: Chatito word feed 

In Figure 2 it can be seen how the sentences are created. Two general constructs are being provided 

at the beginning, with a presence of 60% and 40% of in the produced files, respectively. For each 

variable in the sentence, values are provided below by the developers. Once a sentence is created, 

it is then analyzed based on its intent and entities. This process is followed twice, once to produce 

a training file for the Rasa’s NLU component, and another one to test the efficiency of the training 

that was conducted beforehand. The content of the files produced by Chatito resembles to Figure 

3. Firstly, the intent of the user message is made clear, which is to find a bookstore. Afterwards, 

the key-value entity is the place, which in this example is the city of Madrid. Rasa’s NLU 

component will be trained with a file containing such examples, learning how to match the user 

input by locating keywords with the corresponding intend and values of entities, and afterwards 

its efficacy will be tested with a similar dataset. This process is important to take place, since it 

introduces easily diversity in the training data, which yields a better recognition in unseen queries 

in the testing dataset, thus ensuring the best user experience. 

 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

15 

 

 
 

Figure 3: Chatito output 

Chatette9 is also a tool much like Chatito, generating datasets for training Rasa’s NLU. Their input 

and output files have the same requirements and structure, providing though some advantages. 

Chatette is able to manage larger volumes of data easier and can break down templates into 

multiple files, making them easier to manage.  

 

2.2.2 Rasa 
Rasa10 is an opensource framework for building conversational software, which can be easily 

tailored to the requirements that must be met on occasion. The assistants that are based on Rasa, 

are not static and do not make binary decisions, but rather learn from conversations that take place 

and adapt. This is achieved through the adoption of a machine learning model, which is initially 

trained by the developers. Rasa is composed by two main components: the NLU and Core.  

 

The Rasa NLU component could be kept in mind as an interpreter between the users and the 

machines. The users’ input is broken down and analyzed in order to understand what the 

corresponding intent is, along with the entities that accompany it. After this step, the Rasa Core 

component takes over. Rasa’s dialog management component, Core, makes predictions and 

decides how the AI-assistant should respond based on the specific state of the conversation and 

the context. Core learns how to respond by observing the patterns of past and example conversation 

data. Its input depends on the NLU analysis, which is then processed through the policies that have 

been defined in order to decide which response is most appropriate to provide the user with.  

3 Advanced User Experience Artificial Intelligence (AI)-based Assistant 
Architectural Design and Specifications 

3.1 AI-based Assistant Technical Specifications - User Actions 

 
9 https://pypi.org/project/chatette/ 
10 https://rasa.com/ 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

16 

 

This section describes all the actions that users will be able to perform using the AI-based Assistant 

of the INCOGNITO platform and these actions are also supposed to drive the design and 

implementation of the AI-based Assistant. Using the developed user interfaces of the AI-based 

Assistant either from their desktop or their mobile devices, users will be able to perform the 

following actions by selecting predefined queries to initiate each action and providing in the 

meantime any required by the AI-assistant additional information in textual format that the AI-

based Assistant will processing using several Natural Language Processing (NLP) techniques.  

 

Users will be able to perform the following actions using the AI-based Assistant: 

1. List of the minimum required attributes that are needed to access a specific Service 

Provider: The user will be able to get informed about all the necessary identity attributes that 

he needs to have and share with in order to access a specific Service Provider. When selecting 

this action, the AI-based Assistant will subsequently ask the user for the URL of the Service 

Provider that the user wants to learn this information. In the end, the assistant will retrieve the 

required information and present to the user a list with all the identity attributes that needs to 

be shared with that specific Service Provider. 

2. View de-anonymization risks as a result of sharing specific identity attributes with a 

Service Provider: The user will be able to get information about the de-anonymization risks 

that the sharing of specific identity attributes with a specific Service Provider will have. For 

example, if the user is about to share his/her age with a specific Service Provider that already 

knows country of the user, then the Service Provider may be able to also predict the financial 

status of that user based on the information that this Service Provider for other users that come 

from the same country and has a similar age as our user. When selecting this action, the AI-

based assistant will subsequently ask the user for the URL of the Service Provider that the 

user wants to access and the attributes that the user is about to share, and the assistant will 

respond back with the corresponding de-anonymization risk information. 

3. View the result of stop sharing specific identity attributes with Service Providers: The 

user will be able to see the consequences of stop sharing a specific identity attribute with all 

the Service Providers that he/she use to access. When this action is triggered by the user using 

the UI of the AI-based assistant, the Assistant will subsequently request from the user to 

choose the identity attribute that he/she wants to stop sharing from among all his/her identity 

attributes. Then, the AI-based assistant will process the request of the user and respond with 

a list of the Service Providers that will not be accessible if the user devices to stop sharing that 

specific identity attribute. If the user is then satisfied with the consequences of this action, 

then he/she will be able to automatically delete all the UMA policies or add the required UMA 

policies associated with these specific attributes by answering yes to the last specific question 

of the AI-based Assistant. If the users choose to do so, the AI-based Assistant will 

communicate delete all the UMA policies or create a new one that will all result to stop sharing 

the specific identity attribute of the user with all the Service Providers. This last step will be 

performed by calling the appropriate REST endpoints of the Keycloak's UMA REST API 

(Authorization Server). 

4. Know what INCOGNITO Service Providers can be accessed if sharing specific identity 

attributes: The user will be able to get informed at any time about all the Service Providers 

that can be accessed if the user chooses to create a specific UMA policy that enables the 

sharing of one or more of his/her identity attributes with all the Service Providers that required 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

17 

 

this attribute. When this action is triggered by the user, the AI-based Assistant will prompt the 

user to choose the identity attribute that he/she wants to stop sharing from among all his/her 

identity attributes. Then, the AI-based Assistant will process the request with one custom 

action implemented for that specific user action and will respond to the user with a list that 

includes all the Service Providers that can be access if the user share this specific identity 

attribute. This list may also include Service Providers that require more attributes to be shared 

so that the user is also informed about other attributes that he/she can share to be able to easily 

access other Service Providers too. If the user is satisfied with the result, then he/she will be 

able to automatically request the creation of the required UMA policies for these Service 

Providers so that he/she can automatically access them and subsequently the AI-based 

Assistant will create these policies by calling the appropriate REST endpoints of the the 

Keycloak's UMA REST API (Authorization Server). 

3.2 Architectural design and the Identity Consolidator 
 

As defined in the INCOGNITO reference architecture, the backbone of the AI-based Assistant will 

be implemented as a server-side module using Python programming language and it will be 

deployed and run on the Identity Consolidator server. This implementation will include all the 

required sub-modules that will be responsible for the preprocessing of the received textual actions 

that the user will send and will communicate with all the necessary modules of the Identity 

Consolidator in order to perform the required actions and respond to the user with the proper 

information. In this subsection, we provide more details about all the components of the AI-based 

Assistant that will be part of the Identity Consolidator (IDC). 
 

3.2.1 Interaction with other INCOGNITO modules within the IDC 
Figure 4 depicts all the components within the Identity Consolidator that the AI-based Assistant 

will be able to communicate with in order to retrieve the required identity information or perform 

all the required actions depending on the action that the user has performed using the UI of the AI-

based assistant. We note that, both the desktop client, as well as all the mobile app clients will be 

able to access the AI-based Assistant back-end only through its REST API. 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

18 

 

 
Figure 4. AI-based Assistant interaction with other modules of the Identity Consolidator 

3.2.1.1 Consent Management and ABAC Policies 
The AI-based Assistant custom actions module will be able to view, manage, and delete a user's 

UMA policies depending on the action that the user has performed, using the UI of the AI-based 

Assistant, using the Keycloak's Authorization Server (UMA Policies) REST APIs. 

 

3.2.1.2 Identity Attributes Storage  
The back-end module of the AI-based assistant will be able to communicate with the Identity 

Attributes Storage of the Identity Consolidator through the Identity Attributes Storage REST API. 

Through this REST API the assistant will be able to retrieve or modify all the required identity 

information of a specific user, depending on the action that the user has performed. 

3.3 User Device 
 

On the client-side (web and mobile), there will be existing open-source chatbot UI 

implementations for Android and the Web (e.g.). The AI-based Assistant's client-side will act as 

the interface that captures the user input and inquires and passes them to the client communication 

component and will also send them to the back end for analysis. All the communication between 

the components residing in the client and the server will be done through REST-APIs. 
 

3.3.1 User Interface/User Experience 
 

The User Interface will include some basic actions that the user will be able to perform. There will 

also be predefined queries which will be shown like an open Facebook chat. The user can choose 

his suitable answer by pressing a button for each question. By clicking means that he sends the 

query to the backend and he receives the appropriate answers.  



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

19 

 

 

3.3.1.1 Web User Interface 
 

1. BotUI  

 

BotUI11 makes it super easy to create conversational/bot interfaces. It has an intuitive 

JavaScript API to add messages and show actions that a user can perform. It also gives you 

total control over how everything looks. 

 

Features:  

 

• Fully customizable layouts and messages 

• Text messages can also contain links, images and icons 

• Very good graphical user interface 

• Quick implementation 

• Open source 

 

2. React Simple Chatbot 

 

React Simple Chatbot12 is a web UI for chatbots. It has a very friendly Graphical User Interface 

and can be fully customizable. 

 

Features:  

 

• Simple Form 

• Custom components 

• Speech recognition 

• Very detailed documentation 

• Open source 

 

3. Conversational Form 

 

Conversational Form13 is an open-source concept by SPACE10 to easily turn your content into 

conversations. It features conversational replacement of all input elements, reusable variables 

from previous questions and complete customization and control over the styling. 

  

 
11 https://docs.botui.org/concepts.html 
12 https://lucasbassetti.com.br/react-simple-chatbot/#/docs/themes 
13 https://github.com/space10-community/conversational-form 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

20 

 

 

Features: 

 

• Build fully dynamic conversational experiences using our extensive API 

• Build conditional flows with multiple paths and outcomes 

• Smooth functionality on both desktop and mobile 

• Reusable answers and question variations 

• Easily customize the conversation 

• Open source 

 

   
BotUI 

React Simple 

Chatbot 
Conversational Form 

Installation/ Configuration  Easy installation  Easy installation Very Easy installation 

User Interface  
Good Graphic User 

Interface easy to use 

and understand 

Good Graphic User 

Interface easy to use 

and understand 

Very good Graphic 

User Interface, easy to 

use and understand 

Supported Browser  
Chrome, Safari, 

Firefox  

Chrome, Safari, 

Firefox  

Chrome, Safari, 

Firefox  

Admin UI  Yes Yes Yes 

Open source  Yes Yes Yes 

Development activity  
Active Development, 

last commit was in 

2020 

Active Development, 

last commit was in 

2020 

Active Development, 

last commit was in 

2019 

Documentation  Detailed  Detailed  Very Detailed  

Quick starts  
Yes. Can be found on 

Github. 

Yes. It offers many 

quick starts whose 

source code can be 

found on Github. 

Yes. It offers many 

quick starts whose 

source code can be 

found on Github. 

 

Moreover, there are many web users’ interfaces that can be used for a chatbot. In INCOGNITO 

we are going to use the most appropriate based on our needs and actions. Most of the user interfaces 

are not open-source thus we chose the best open-source ones which are also fully customizable so 

we can modify it as we want.  

 

3.3.1.2 Android User Interface 
 

1. Chatkit: ChatKit14 is a library designed to simplify the development of UI for such a trivial 

task as chat. It has flexible possibilities for styling, customizing and data management. 

 

 

 
14 https://github.com/stfalcon-studio/ChatKit?fbclid=IwAR0rJqY2bLFAaZzaAylvRS7VnG7HZQmyb3iuiObXioFCzJlbQ99opjzbkoU 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

21 

 

Features:  

• Ready-to-use already styled solution for quick implementation 

• Default and custom media messages 

• Fully customizable layouts - setting styles out of the box (use your own colors, text 

appearances, drawables, selectors and sizes) or even create your own custom markup 

or/and holders for unique behaviour 

• List of dialogs, including tete-a-tete and group chats, markers for unread messages and 

last user message view 

• List of messages (incoming and outcoming) with history pagination and already 

calculated dates headers 

• Different avatars with no specific realization of image loading - you can use any library 

you want 

• Selection mode for interacting with messages 

• Links highlighting 

• Easy dates formatting 

• Own models for dialogs and messages - there is no converting needed 

• Ready to use message input view 

• Custom animations 

• Open source 

 

2. Android Chat UI: Android Chat UI15 is a library that is still in its very early stages and can 

be fully customizable.  

 

Features: 

 

• Ability to use custom item layout 

• Ability to send and receive multimedia messages like images, embedded locations and 

even videos 

• Ability to track and update individual messages (Useful to be able to show 

delivered/read/unread status or the like) 

• Open source 

 

3. ChatBot: Chatbot16 is a library using Artificial intelligence Markup Language (AIML). It is a 

very basic UI that can be customized based on your needs. 

 

Features:  

 

• User friendly Graphical Interface 

• Quick implementation 

• Fully Customizable 

 
15 https://github.com/timigod/android-chat-ui?fbclid=IwAR3cEtLHkBqfFp47_7VB2ye3BsFTJqA1I90aF8nO2vhz-MxR_7M6CxWS1JY 
16 https://github.com/Hariofspades/ChatBot?fbclid=IwAR2rIcWK3vnlPe7pws4EeH9E9vSatCtjLSPdYUqEfn4NFuT0RC2W6wVkXQQ 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

22 

 

• Open source 

 

4. Simple Chat: Simple Chat17 is a room chat system for Android that supports real-time, IRC 

Style using firebase as database.  

 

Features: 

• Real-time 

• Very easy to integrate in your project 

• Anonymous users or with their own username 

• Anti-flood protection 

• Profanity filter 

• Change nickname notifications 

• Helper methods for customizations 

• Open source 

 

5. Chateau: Chateau18 is a framework for adding (or improving) chat functionality in any 

Android app. Built in a modular way using Model-View-Presenter (MVP) and Clean 

Architecture, it can easily be integrated with your chat backend with only minor changes to the 

included UI. 

 

Features: 

• Easy to understand code, by consistently applying design patterns across the framework 

and example app 

• Easy to integrate with any chat backend 

• Well documented with good test coverage 

• As few as possible external dependencies, because no one likes a bloated library 

• Robust Architecture 

• Open source 

   Chatkit Chateau Chat UI ChatBot Simple Chat 

Installation/ 

Configuration  
Very Easy Very Easy Easy Easy Easy 

User Interface  

Customizable 

and very 

good Graphic 

User 

Interface 

Customizable 

and basic 

Graphic User 

Interface 

Customizable 

and very basic 

Graphic User 

Interface 

Customizable 

and very basic 

Graphic User 

Interface 

Customizable 

and very basic 

Graphic User 

Interface 

 
17 https://github.com/AndreiD/SimpleChat?utm_source=android-arsenal.com&utm_medium=referral&utm_campaign=4206 
18 https://github.com/badoo/Chateau?utm_source=android-arsenal.com&utm_medium=referral&utm_campaign=4127 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

23 

 

Admin UI  No No No No No 

Open source  Yes Yes Yes Yes Yes 

Development 

activity  

Last activity 

was in 2019 

Last activity 

was three years 

ago 

Not active the 

last two years 

Not active the 

last few years 

Not active the 

last few years 

Documentation  
Detailed and 

very simple 

Very Detailed 

and helpful 

Includes only 

the basics 

Proof of 

concept, 

includes very 

basic 

documentation 

Not helpful and 

very limited 

Quick starts  Yes Yes Yes No No 

 

In a nutshell, there exist many plain UI libraries on the web and most of the aren’t open source. 

Most of the UI libraries that are open source are full stack solutions and work with firebase 

(Google, 2020). However, Rasa will be our backend in INCOGNITO and is compatible with 

almost all UIs (More details for Rasa in subsection 4.1). Therefore, we decided to implement a UI 

from scratch by combining all the available open-source UI libraries that we found with the aim 

to create our own Chatbot UI customized to the needs, the look and feel of an AI-based Assistant. 

 

4 Natural Language Understanding Pipeline 
 

For the Natural Language Understanding Pipeline we will use the powerful and popular RASA 

framework19. Below we present the RASA architecture, components and introductory examples 

on its function. 

4.1 Rasa Architecture 
An overview of the Rasa Open-Source architecture is provided by Figure 5. The two primary 

components are Natural Language Understanding (NLU) and dialogue management (Core). 

NLU is the part that handles intent classification, entity extraction. It is shown below as the NLU 

Pipeline because it processes user utterances using an NLU model that is generated by the trained 

pipeline. 

The dialogue management component decides the next action in a conversation based on the 

context. This is displayed as the Dialogue Policies in Figure 5. 

 
19 www.rasa.com 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

24 

 

 

Figure 5: Rasa Architecture 

 

NLU and Core are independent and one can use NLU without Core, and vice versa. Though Rasa 

recommends using both. In Figure 6 a simplified visualization of Rasa’s functionality is presented, 

showcasing the internal processes that take place from the moment Rasa will receive input from 

the user. The Database component contains information that is used in order to determine the 

appropriate responses that need to be given to the user. 

 

 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

25 

 

 

Figure 6: RASA internal and external interaction and data flow 

 

4.2 Important concepts 

• Intent — Intent is nothing but what the user is aiming for. For example — if the user says 

“Reserve a table at Cliff House tonight” the intent can be classified as to book the table. 

• Entity — Entity is to extract the useful information from the user input. From the example 

above “Reserve a table at Cliff House tonight” the entities extracted would be place and 

time. Place — Cliff House and Time — tonight. 

• Stories — Stories define the sample interaction between the user and chatbot in terms of 

intent and action taken by the bot. Like in the example above bot got the intent of booking 

the table and entities like place and time but still, there is an entity missing — no of people 

and that would make the next action from the bot. 

• Actions — Actions are basically the operations performed by the bot either asking for some 

more details to get all the entities or integrating with some APIs or querying the database 

to get/save some information.  

The following Figure 7 shows how the various concepts are connected under the RASA 

framework. 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

26 

 

 

Figure 7: RASA internal processing flow 

 

4.3 NLU files 

NLU training file: It contains some training data in terms of user inputs along with the mapping 

of intents and entities present in each of them. The more varying examples you provide, better 

your bot’s NLU capabilities become. For the creation of this file is where it comes in handy tools 

for sentence-template expansion, like Chatito. 

Stories file: Though we will be discussing it in detail in an upcoming section, it is worth to briefly 

mention that this file contains sample interactions the user and bot will have. Rasa (Core) creates 

a probable model of interaction from each story. 

Domain file: This file defines all the intents, entities (slots), possible actions taken by the agent, 

response templates and some more information. The intents and the slots should match those of 

the NLU training file, whereas the intents, slots and actions should match the ones present in the 

Stories file. We will discuss this file in detail in the RASA Core section. 

#Needs attention: 

NLU.yml  

nlu: 

- intent: inform_attributes  



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

27 

 

  examples: |  

    - I want information (about the attributes) of this service  

    - What are the attributes needed for this service  

 - intent: check_attributes  

   Examples: |  

    - What attributes I am sharing (with the service)  

    - How much personal data I am sharing (with the service)  

 - intent: grant_access  

   Examples: |  

    - (Please) share my  [email address]{“entity”:”attribute”, “value”:”email”}  

    - (Please) give access to my [phone number]{“entity”:”attribute”, “value”:”phone”}  

  

- intent: remove_access  

   Examples: |  

    - I want to restrict  the access to my [credict card number] {“entity”:”attribute”, 

“value”:”card”} 

Domain.yml: 

version: "2.0" 

intents: 

- inform_attributes 

- check_attributes 

- grant_access 

- remove_access 

- greet 

- bye 

- affirmative 

- negative 

 

entities: 

- attribute 

 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

28 

 

slots: 

  attribute: 

    type: list 

    influence_conversation: true 

  current_attributes: 

    type: list 

    influence_conversation: false 

  service_attributes 

    type: list  

    influence_conversation: false 

 

actions: 

- action_get_service_attributes 

- action_get_personal_attributes 

- action_remove_access 

- action_grant_access 

- utter_greet 

- utter_bue 

- utter_inform 

- utter_check 

- utter_reply 

- utter_default 

- utter_anything_else 

  

templates: 

  utter_greet: 

    - text: Hi, how are you? 

    - text: Hello, How are you doing? 

  utter_bye:  

    - text: Bye and have a nice day  

    - text: Bbye and have a nice day  

  utter_default:  

    - text: I am not sure what you're aiming for  

    - text: I am sorry but I am not able to get you. 

  utter_reply: 

    - text: Ok, done. 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

29 

 

    - text: Great, done. 

  utter_check: 

    - text: The service has access to {current_attributes}  

  utter_inform: 

    - text: This service needs access to {service_attributes} 

  utter_anything_else: 

    - text: Is there anything else I can help you with? 

    - text: Let me know if there is anything else I can help you with 

 

Stories.yml 

stories: 

- story: share attributes 

  steps: 

  - intent: greet                         # user message with no entities 

  - action: utter_greet 

  - intent: inform_attributes  # user message with no entities 

  - action: action_get_service_attributes 

  - action: utter_inform 

  - intent: grant_access                            entities: 

    - attribute: "email" 

    - attribute: "phone" 

  - action: utter_reply                  # action that the bot should execute 

  - action: utter_anything_else 

  - intent: negative 

  - action: utter_bye 

 

Rasa Core — Dialog Management 

In Figure 8 we can observe how all the Rasa core components interact with each other. 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

30 

 

 

Figure 8: Rasa Core High Level Architecture 

The user ’s inputs are expressed as intents with corresponding entities, and chatbot responses are 

expressed as actions. For dialog training, Rasa has 4 main components: 

1. Domain (domain.yml) 

Consists of five key parts consisting of intents, entities, slots, actions, and templates.  

• slots: are the bot’s memory. They act as a key-value store which can be used to store 

information the user provided (e.g., their home city) as well as information gathered about 

the outside world (e.g., the result of a database query). 

• actions: the bot's response to user input or data manipulation and internal processing. There 

are 3 kinds of actions in Rasa Core: default actions, utter actions & custom actions 

• templates: they are messages that the bot will send back to the user. 

Example of a domain for our bot: 

https://gist.githubusercontent.com/itsromiljain/948d8c1a1569f80f873df6d29c6492af/raw/7b9603

ba70ed0d6e8ad8c55923deb9952c33bc51/domain 

 

slots: 

  category: 

    type: text 

  

entities: 

- category 

  

https://gist.githubusercontent.com/itsromiljain/948d8c1a1569f80f873df6d29c6492af/raw/7b9603ba70ed0d6e8ad8c55923deb9952c33bc51/domain
https://gist.githubusercontent.com/itsromiljain/948d8c1a1569f80f873df6d29c6492af/raw/7b9603ba70ed0d6e8ad8c55923deb9952c33bc51/domain


 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

31 

 

intents: 

- greet 

- fine_ask 

- fine_normal 

- news 

- thanks 

- bye 

  

actions: 

- action_restart 

- action_get_news 

- utter_greet 

- utter_reply 

- utter_help 

- utter_anything_else 

- utter_ofc 

- utter_bye 

- utter_default 

  

templates: 

  utter_greet: 

    - text: Hey, how are you? 

    - text: Hello, How are you doing? 

  utter_reply: 

    - text: I'm doing great. Please let me know what I can do for you. 

    - text: I'm doing great. Tell me How can I help you today? 

  utter_help: 

    - text: Great. How can I help you? 

    - text: Great. Tell me How can I help you? 

    - text: Great. Tell me what all news you would like to get. 

  utter_anything_else: 

    - text: No worries. Is there anything else I can help you with? 

    - text: No worries. Let me know if there is anything else I can help you with 

  utter_ofc: 

    - text: I can definitely help you. The top 5 news of the {category} 

    - text: Surely, I can help you. The top 5 news of the {category} 

  utter_bye: 

    - text: Bye and have a nice day 

    - text: Bbye and have a nice day 

  utter_default: 

    - text: I am not sure what you're aiming for 

    - text: I am sorry but I am not able to get you. 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

32 

 

    - text: My appologies but I am not able to get you 

 

2. Stories (stories.md) 
Stories are a type of training data used to train your assistant's dialogue management model. Stories 

can be used to train models that are able to generalize to unseen conversation paths. 

 

Figure 9: Conversational path example of a story 

A story is a representation of a conversation between a user and an AI assistant, converted into a 

specific format where user inputs are expressed as intents (and entities when necessary), while the 

assistant's responses and actions are expressed as action names. An example can be seen in Figure 

9, and a corresponding file can be found here: 

https://gist.githubusercontent.com/itsromiljain/4e5effffac67b9370ce90ae5c59cbc54/raw/fc216e4

18cbda48d866d5b733bfc5bd2c4a19801/stories 

## fallback- utter_default 

## greeting path 1* greet- utter_greet 

## fine path 1* fine_normal- utter_help 

## fine path 2* fine_ask- utter_reply 

## news path* news- utter_ofc- action_get_news 

## thanks path 1* thanks- utter_anything_else 

 ## bye path 1* bye- utter_bye 

 

All actions executed by the bot, including responses are listed in stories under the action key. 

Rasa docs on Stories: https://rasa.com/docs/rasa/stories/ 

3. Policies (policy.yml) 

The rasa core policy decides which action to take at every step in the conversation. There are 

different policy algorithms to choose from, and one can include multiple policies in a single rasa 

https://gist.githubusercontent.com/itsromiljain/4e5effffac67b9370ce90ae5c59cbc54/raw/fc216e418cbda48d866d5b733bfc5bd2c4a19801/stories
https://gist.githubusercontent.com/itsromiljain/4e5effffac67b9370ce90ae5c59cbc54/raw/fc216e418cbda48d866d5b733bfc5bd2c4a19801/stories
https://rasa.com/docs/rasa/responses
https://rasa.com/docs/rasa/stories/


 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

33 

 

core Agent but at every turn, the policy which predicts the next action with the highest confidence 

will be used.  

The process of selecting the policy algorithm(s) for training the agent is pretty straightforward. 

Only the name of the module along with its parameters have to be defined in the policy file. 

Example of a policy file: 

https://gist.githubusercontent.com/itsromiljain/c512673350d056ff342da8171da05e7c/raw/7d81d

1e06928fc0f928957d91d91ded0b1e5ebea/policy.yml 

Rasa docs on policies: https://rasa.com/docs/rasa/policies 

 

4. Rasa Actions (actions.py) 

 

https://rasa.com/docs/rasa/actions 

After each user message, the model will predict an action that the assistant should perform next. 

Types of actions: 

Responses: A response is a message the assistant will send back to the user. This is the action you 

will use most often, when you want the assistant to send text, images, buttons or similar to the 

user. 

• Custom Actions: A custom action is an action that can run any code you want. This can be 

used to make an API call, or to query a database for example. 

• Forms: Forms are a special type of custom action, designed to handle business logic. If you 

have any conversation designs where you expect the assistant to ask for a specific set of 

information, you should use forms. 

• Default Actions: Default actions are actions that are built into the dialogue manager by 

default. Most of these are automatically predicted based on certain conversation situations. 

You may want to customize these to personalize your assistant. 

 

A custom action can run any code , including API calls, database queries etc. They can ask for 

identity attributes to reveal, to access a service provider, to check the privacy risk etc. 

Rasa Core can call endpoints specified by us or perform SQL database queries when a custom 

action is predicted. An endpoint could be a web server that reacts to this call, runs the code and 

optionally returns information to modify the dialogue state. 

Rasa docs on Custom Actions: https://rasa.com/docs/rasa/custom-actions 

 

https://gist.githubusercontent.com/itsromiljain/c512673350d056ff342da8171da05e7c/raw/7d81d1e06928fc0f928957d91d91ded0b1e5ebea/policy.yml
https://gist.githubusercontent.com/itsromiljain/c512673350d056ff342da8171da05e7c/raw/7d81d1e06928fc0f928957d91d91ded0b1e5ebea/policy.yml
https://rasa.com/docs/rasa/policies
https://rasa.com/docs/rasa/actions
https://rasa.com/docs/rasa/responses
https://rasa.com/docs/rasa/custom-actions
https://rasa.com/docs/rasa/forms
https://rasa.com/docs/rasa/default-actions
https://rasa.com/docs/rasa/custom-actions


 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

34 

 

5 Conclusions 
 

Deliverable D5.1 “Specification and initial design of the Advanced User Experience / User 

Interface (UI/UX) Artificial Intelligence (AI)-based assistant pipeline” is the first deliverable of 

Work Package 5. Addressing the task T5.1 objectives, the key achievement that is accomplished 

through the scientific research activities reported in this deliverable, is the definition of the 

specifications and the initial design of the essential components of the AI-based assistant, which 

plays a vital role in the INCOGNITO platform. An extensive review of the related available 

technologies has been performed and a prototype design has been made. Thus, Task 5.1 has been 

fully achieved, and the results are depicted in this deliverable. We laid the foundation for the 

INCOGNITO AI-based assistant and designed a new unique NLU-machine learning pipeline, 

based on the Rasa framework described in section 4, which will be utilized when users interact 

with the assistant and require help to be provided. The Rasa framework, which has been tailored 

to meet the INCOGNITO platform requirements provide users with the appropriate response based 

on the input of the user queries, as it is described in section 4.3. The information exchange between 

those parties will be entirely in the form of natural language, removing any barriers that could 

potentially pose difficulties in the communication process between the users and the AI-based 

assistant. This progress constitutes the first stage of the design and components prototyping of the 

machine learning pipeline. To this end, Chatito is also utilized to train and test the protype in order 

to provide a strong machine learning infrastructure. Emphasis has also been given to the User 

Interface, whether it is on a Web or Android app. The user experience and ease of use for the 

application heavily depends on the optimal placement of choices on the screen for a seamless 

interaction.  

 

The research progress presented in this deliverable will be carried out further in D5.2, where the 

capabilities of the current prototype will be extended. More specifically, as dictated in Task 5.2, 

the AI-based assistant will adopt a strong dynamic character, which will allow it to evolve and 

adapt its action suggestions. The assistant will continuously learn from its interaction with the 

users, along with feedback that will be provided, towards achieving the goal of providing the 

needed information to the user and minimize the possibilities of imprecise responses. In D5.3, the 

result stemming from the efforts of Task 5.3 will be depicted, where the overall user experience 

with the utilized Interfaces will be evaluated, along with effectiveness, efficiency and satisfaction 

of end-users.  

 

6 References 
 

[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-

propagating errors,” Nature, 1986, doi: 10.1038/323533a0. 

[2] J. L. Elman, “Finding structure in time,” Cogn. Sci., 1990, doi: 10.1016/0364-

0213(90)90002-E. 

[3] R. Kneser and H. Ney, “Improved backing-off for M-gram language modeling,” 1995, 

doi: 10.1109/icassp.1995.479394. 

[4] R. Caruana, “Multitask Learning,” Mach. Learn., 1997, doi: 10.1023/A:1007379606734. 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

35 

 

[5] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A Neural Probabilistic Language 

Model,” 2003, doi: 10.1162/153244303322533223. 

[6] T. Mikolov, M. Karafiát, L. Burget, C. Jan, and S. Khudanpur, “Recurrent neural network 

based language model,” 2010. 

[7] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Natural 

language processing (almost) from scratch,” J. Mach. Learn. Res., 2011. 

[8] T. Mikolov, A. Deoras, S. Kombrink, L. Burget, and J. H. Černocký, “Empirical 

evaluation and combination of advanced language modeling techniques,” 2011. 

[9] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word 

representations in vector space,” 2013. 

[10] A. Graves, A. R. Mohamed, and G. Hinton, “Speech recognition with deep recurrent 

neural networks,” 2013, doi: 10.1109/ICASSP.2013.6638947. 

[11] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural 

networks,” 2014. 

[12] M. T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based 

neural machine translation,” 2015, doi: 10.18653/v1/d15-1166. 

[13] A. Kannan et al., “Smart reply: Automated response suggestion for email,” 2016, doi: 

10.1145/2939672.2939801. 

[14] H. Mino, M. Utiyama, E. Sumita, and T. Tokunaga, “Key-value Attention Mechanism for 

Neural Machine Translation,” Proc. Eighth Int. Jt. Conf. Nat. Lang. Process. (Volume 2 

Short Pap., 2017. 

[15] A. Kuncoro, C. Dyer, J. Hale, D. Yogatama, S. Clark, and P. Blunsom, “LSTMs can learn 

syntax-sensitive dependencies well, but modeling structure makes them better,” 2018, doi: 

10.18653/v1/p18-1132. 

[16] T. Blevins, O. Levy, and L. Zettlemoyer, “Deep RNNs encode soft hierarchical syntax,” 

2018, doi: 10.18653/v1/p18-2003. 

[17] X. P. Qiu, T. X. Sun, Y. G. Xu, Y. F. Shao, N. Dai, and X. J. Huang, “Pre-trained models 

for natural language processing: A survey,” Science China Technological Sciences. 2020, 

doi: 10.1007/s11431-020-1647-3. 

[18] Y. N. Dauphin, G. Tur, D. Hakkani-Tür, and L. Heck, “Zero-shot learning for semantic 

utterance classification,” 2014. 

[19] G. Tur, L. Deng, D. Hakkani-Tür, and X. He, “Towards deeper understanding: Deep 

convex networks for semantic utterance classification,” 2012, doi: 

10.1109/ICASSP.2012.6289054. 

[20] H. B. Hashemi, A. Asiaee, and R. Kraft, “Query Intent Detection using Convolutional 

Neural Networks,” WSDM QRUMS 2016 Work., 2016, doi: 10.1145/1235. 

[21] J. K. Kim, G. Tur, A. Celikyilmaz, B. Cao, and Y. Y. Wang, “Intent detection using 

semantically enriched word embeddings,” 2017, doi: 10.1109/SLT.2016.7846297. 

[22] I. Casanueva, T. Temčinas, D. Gerz, M. Henderson, and I. Vulić, “Efficient intent 

detection with dual sentence encoders,” arXiv. 2020, doi: 10.18653/v1/2020.nlp4convai-

1.5. 

[23] P. Xu and R. Sarikaya, “Convolutional neural network based triangular CRF for joint 

intent detection and slot filling,” 2013, doi: 10.1109/ASRU.2013.6707709. 

[24] G. Mesnil et al., “Using recurrent neural networks for slot filling in spoken language 

understanding,” IEEE Trans. Audio, Speech Lang. Process., 2015, doi: 



 

 

Deliverable D5.1 “Specification and initial design of the Advanced User 

Experience / User Interface (UI/UX) Artificial Intelligence (AI)-based 

assistant pipeline” 

 

36 

 

10.1109/TASLP.2014.2383614. 

[25] G. Castellucci, V. Bellomaria, A. Favalli, and R. Romagnoli, “Multi-lingual intent 

detection and slot filling in a joint BERT-based model,” arXiv. 2019. 

[26] M. Henderson, B. Thomson, and S. Young, “Word-based dialog state tracking with 

recurrent neural networks,” 2014, doi: 10.3115/v1/w14-4340. 

[27] T. H. Wen et al., “A network-based end-to-end trainable task-oriented dialogue system,” 

2017, doi: 10.18653/v1/e17-1042. 

[28] N. Mrkšic, D. Séaghdha, T. H. Wen, B. Thomson, and S. Young, “Neural belief tracker: 

Data-driven dialogue state tracking,” 2017, doi: 10.18653/v1/P17-1163. 

[29] S. Choudhary, P. Srivastava, L. Ungar, and J. Sedoc, “Domain aware neural dialog 

system,” arXiv. 2017. 

[30] S. Santhanam and S. Shaikh, “A Survey of Natural Language Generation Techniques with 

a Focus on Dialogue Systems - Past, Present and Future Directions,” arXiv. 2019. 

[31] T. H. Wen, M. Gašić, N. Mrkšić, P. H. Su, D. Vandyke, and S. Young, “Semantically 

conditioned lstm-based Natural language generation for spoken dialogue systems,” 2015, 

doi: 10.18653/v1/d15-1199. 

[32] M. Lewis et al., “BART: Denoising sequence-to-sequence pre-training for natural 

language generation, translation, and comprehension,” arXiv. 2019, doi: 

10.18653/v1/2020.acl-main.703. 

[33] B. Peng et al., “Few-shot natural language generation for task-oriented dialog,” arXiv. 

2020, doi: 10.18653/v1/2020.findings-emnlp.17. 

 


