

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

1

IdeNtity verifiCatiOn with privacy-preservinG credeNtIals for anonymous

access To Online services

WP4 – Identity acquisition, integration and management

D4.1 “Identity Acquisition and Integration Platform”

Marie Sklodowska Curie,

Research and Innovation Staff

Exchange (RISE)

Editor(s): CUT
Author(s): Kostantinos Papadamou (CUT - outside secondment),

Markos Charalambous (CUT - outside secondment), Petros
Papagiannis (CUT - secondee), Ioana Stroinea (CSGN -
secondee), Nikolaos Salamanos (CUT - secondee), Vaios
Bolgouras (UPRC - outside secondment), Evangelos
Kotsifakos (LST - outside secondment), George
Kalatzantonakis (LST - secondee), Nikolaos Episkopos
(FOGUS - secondee), Nicolas Kourtellis (TID - secondee),
Nikos Passas (UPRC - outside secondment), Christos Xenakis
(UPRC - secondee), Angeliki Panou (UPRC - secondee),
Michael Sirivianos (CUT - outside secondment)

Dissemination Level: Public
Nature: Report

Version: 3.0

INCOGNITO is funded by the European Commission”s Horizon 2020 Research and Innovation Framework

program under the Marie Skłodowska-Curie Research and Innovation Staff Exchanges Action, Grant Agreement

no 824015. The content of this deliverable reflects only the views of the project owner. The European Agency /

Commision is not responsible for any use that may be made of the information it contains.

PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the INCOGNITO Consortium. Neither this document nor the

information contained herein shall be used, duplicated or communicated by any means to any third party, in whole or in parts, except

with prior written consent of the INCOGNITO consortium.

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

2

Project Profile

Contract Number 824015

Acronym INCOGNITO

Title IdeNtity verifiCatiOn with privacy-preservinG credeNtIals for anonymous

access To Online services

Start Date Jan 1st, 2019

Duration 48 Months

Partners

TECHNOLOGIKO PANEPISTIMIO

KYPROU (BEN2)
CUT Cyprus

UNIVERSITY OF PIRAEUS

RESEARCH CENTRE (BEN1)
UPRC

Greece

CERTSIGN SA (BEN3) CSGN Romania

TELEFONICA INVESTIGACION Y

DESARROLLO SA (BEN6)
TID Spain

LSTECH ESPANA SL (BEN4)

LST Spain

FOGUS INNOVATIONS &

SERVICES P.C (BEN7)
FOGUS Greece

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

3

Document History

Version Date Author(s) Remarks

0.1 30/08/2020 Kostantinos Papadamou (CUT),
Petros Papagiannis (CUT)

Executive Summary and Table of
Contents

0.2 04/09/2020 Kostantinos Papadamou (CUT), Vaios
Bolgouras (UPRC),
Angeliki Panou (UPRC)

Introduction

0.3 20/09/2020 Kostantinos Papadamou (CUT),
Vaios Bolgouras (UPRC), Ioana
Stroinea (CSGN)

Identity Acquisition and Integration
Platform

0.4 22/09/2020 Kostantinos Papadamou (CUT),
Markos Charalambous (CUT),
Petros Papagiannis (CUT)

Physical Identity Acquisition Module

0.5 15/10/2020 Petros Papagiannis (CUT), Nicolas
Kourtellis (TID), Nikolaos Episkopos
(FOGUS)

Online Identity Acquisition Module

0.6 18/10/2020 Vaios Bolgouras (UPRC), Ioana
Stroinea (CSGN), Petros Papagiannis
(CUT)

Identity Integration and

Normalization Module

0.7 25/10/2020 Kostantinos Papadamou (CUT),
Markos Charalambous (CUT), Vaios
Bolgouras (UPRC), Ioana Stroinea
(CSGN)

Identity Attributes Storage schema

definition and description

0.8 10/11/2020 Ioana Stroinea (CSGN), George
Kalantzantonakis (LST), Nikolaos
Salamanos (CUT)

Identity Attributes Storage REST API

definition and documentation

0.85 25/11/2020 Ioana Stroinea (CSGN), George
Kalantzantonakis (LST)

IDC 3rd Party REST API definition

and documentation

0.9 10/12/2020 Kostantinos Papadamou (CUT),
Nikolaos Salamanos (CUT), Nicolas
Kourtellis (TID), Nikolaos Episkopos
(FOGUS)

Update of the Identity Attributes

Storage REST API and of the IDC 3rd

Party REST API documentations and

writing of Conclusion

0.95 20/12/2020 Kostantinos Papadamou (CUT),
Michael Sirivianos (CUT), Christos
Xenakis (UPRC), Evangelos Kotsifakos
(LST)

Document Review

1.0 27/12/2020 Nikos Passas (UPRC) Document Submission

2.0 22/01/2021 Nikos Passas (UPRC) Edited based on the comments

from the EU

3.0 15/02/2021 Nikos Passas (UPRC) Edited based on the comments

from the EU

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

4

Deliverable Dates

Delivery Date

Contract delivery due date 31/12/2020 (M24)

Actual delivery date of version n.1 31/12/2020 (M24)

Actual delivery date of version n.2 22/01/2021 (M25)

Actual delivery date of version n.3 15/02/2021 (M26)

Fellow ID Researcher Name Researcher Category Declaration No.
Person
Months

8 Christos Xenakis ER 7 0.3

9 Angeliki Panou ESR 6 0.3

11 Ioana Stroinea ESR 9, 18 2.63

5 Petros Papagiannis ESR 4 4

14 George Kalantzantonakis ESR 14 4

18 Nikolaos Salamanos ER 15 3

21 Nicolas Kourtellis ER 17 2

22 Nikolaos Episkopos TS 19 3

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

5

Executive Summary

This current deliverable describes the design and implementation of the Identity Acquisition and
Integration platform, one of the key components of the INCOGNITO platform and is part of the activities
of Work Package 4. The development of the project is taking place under a partnership that involves both
academic and industrial expertise. Considering the interdisciplinary knowledge exchange, the consortium
involved in the INCOGNITO body aims to create a platform that leverages the state-of-the-art technologies
so that users may securely, privately and effortlessly access online services, as well as to add features that
guide users through the registration and authentication processes (e.g., an AI-based assistant) without
the need to disclose their full identity.

D4.1 tackles the objectives of Task 4.1: "Identity Acquisition of multiple soft proofs of identities and
Identity integration engine" via the scientific research activities reported in this deliverable. More
specifically, the purpose of this deliverable is to specify the techniques used and the solutions that have
been designed and implemented in order to provide an Identity Acquisition and Integration platform that
enables the acquisition and the seamless integration of the multiple soft proofs of identities of a user,
both the real-world identities (e.g., national ID cards, utility bills, ePassports, eID cards, etc.), as well as all
the online accounts of the user, through web and mobile application interfaces.

Furthermore, the Identity Acquisition and Integration is part of the broader Identity Consolidator, which
is a complete identity acquisition and management and a consent management solution that enables
users to manage their identity and their consent, while at the same time it provides access to this
information to third parties (e.g., Service Providers) taking into account all the relevant security, privacy,
authorization and authentication aspects.

Finally, this document presents the entire design and implementation of the Identity Acquisition and
Integration platform and it carefully details all the supported functionalities offered by all the components
that together form this platform and offer to the user a user-friendly and secure platform for identity
acquisition, validation and integration. At the same time, this deliverable also defines and documents the
implementation of other critical components and modules (e.g., RESTful APIs) that are required for the
proper integration between the diverse modules of the Identity Consolidator and other components of
the INCOGNITO platform.

Please note that hereinafter, mentions of "INCOGNITO" refer to the platform that will be implemented in
the context of the project, unless stated otherwise (for example "INCOGNITO body/consortium/users
etc.").

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

6

Table of Contents

Document History .. 3

Deliverable Dates .. 4

Executive Summary ... 5

Table of Figures ... 9

Table of Abbreviations ... 10

1 Introduction ... 11

1.1 General Overview of the Identity Acquisition and Integration Platform 11

2 Identity Acquisition and Integration Platform ... 12

2.1 Identity Consolidator Platform & Identity Acquisition and Integration Web/Mobile
Application .. 14

3 Physical Identity Acquisition and Verification Module ... 16

3.1 Physical Identity Acquisition ... 17
3.1.1 Initiate Physical Identity Acquisition process .. 18
3.1.2 Capture Physical Identity Document and User Face Pictures .. 19
3.1.3 View and Manage Physical Identity Document Information and Uploaded Pictures 20
3.1.4 User Addresses' Information Acquisition .. 20
3.1.5 RFID-enabled Identity Document Scanning using NFC-enabled devices ... 21

3.2 Physical Identity Verification .. 26
3.2.1 Peer-to-Peer Verification Using Crowdsourcing Techniques ... 26
3.2.2 Automated Verification Techniques .. 28
3.2.3 Remote Identity Verification using the WebRTC Protocol ... 29

3.3 Physical Identity Acquisition Mobile Application ... 30

3.4 Physical Identity Acquisition Module Internal REST API ... 31
3.4.1 Physical Identity Document Verification Status ... 32
3.4.2 Identity Attribute Verification Status ... 33
3.4.3 Store RFID-enabled Physical Identity Document Information ... 33

4 Online Identity Acquisition Module ... 35

4.1 User-assisted Online Identity Acquisition process ... 36

4.2 Automatic Online Identity Acquisition process .. 37

5 Identity Integration and Normalization .. 38

5.1 Identity Integration and Normalization Algorithm ... 38

6 Identity Attributes Storage ... 39

6.1 Notation and Conventions.. 40

6.2 User Account Table .. 40

6.3 User Physical Identities Info Table .. 41

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

7

6.4 Identity Providers Data Table ... 42

6.5 User Names Info Table ... 44

6.6 User Phones Info Table .. 46

6.7 User Addresses Info Table .. 47

6.8 MediaItem Table .. 49

6.9 Verification Table ... 50

6.10 Audits Info Table .. 51

6.11 Cryptographic Credentials Table ... 52

6.12 Service Providers Users Table ... 53

6.13 Identity Providers Users Table .. 53

6.14 Identity Providers Metadata Table ... 54

6.15 User Physical Identity Documents Cropped Regions Table ... 54

6.16 User Relationships Info Table ... 55

7 Identity Attributes Storage REST API .. 55

7.1 REST Services ... 56

7.2 HTTP Request & Response Header Fields .. 56

7.3 Request Operations ... 57
7.3.1 Creation of Information ... 57
7.3.2 Conditional Requests ... 57
7.3.3 Full Vs Partial Modifications .. 57
7.3.4 Delete Information .. 58

7.4 Query Invocations .. 58
7.4.1 Authentication & Authorization .. 58
7.4.2 Query Parameters .. 59
7.4.3 Data Filtering ... 59

7.5 Response Format ... 61

7.6 Error Codes .. 61

7.7 Structure ... 61
7.7.1 Singular Fields .. 61
7.7.2 Plural Fields .. 62
7.7.3 Name Element ... 63
7.7.4 address Element .. 63
7.7.5 account Element .. 63
7.7.6 verificationInfo Element .. 64
7.7.7 Other Elements .. 64

8 Identity Consolidator (IDC) 3rd Party REST API .. 65

8.1 High-Level Operations .. 65

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

8

8.2 Transfer Trust Between Service Providers ... 65

8.3 Delete User Identity Consolidator Account ... 66

9 Conclusion ... 67

10 References ... 69

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

9

Table of Figures

Figure 1. Identity Acquisition and Integration Platform ... 13
Figure 2. Identity Consolidator platform Web application main page ... 15

Figure 3. Identity Consolidator Mobile Application... 16
Figure 4. Declare Physical identity document information .. 19
Figure 5. List of required parts to crop from the captured identity document photo 20
Figure 6. Address information acquisition by declaring its details .. 21
Figure 7. RFID-enabled Identity document verification guidelines (left) and prompt to choose the

document to be verified (right) ... 24
Figure 8. Enter Identity document required information for BAC authentication 24

Figure 9. Data from the biometric passport has been read. Data has been anonymized for privacy

reasons... 25
Figure 10. Peer-to-peer audit of the identity document number of a user 28
Figure 11. Screen where the verifier declares the email address of the user that wants to be

verified using remote identity verification .. 30
Figure 12. Remote Identity Verification using the WebRTC protocol. Faces hidden for privacy

reasons... 30

Figure 13. Screenshots of from some pages of the Physical Identity Acquisition Mobile

Application .. 31

Figure 14. Main page of the Online Identity Acquisition Web application 36
Figure 15. Main page of the Online Identity Acquisition Mobile application 37

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

10

Table of Abbreviations

AA Active Authentication

API Application Programming Interface

BAC Basic Access Control

HTTP Hypertext Transfer Protocol

ID Identity

IDC Identity Consolidator

IdP Identity Provider

IIM Identity Integration Module

IoT Internet of Things

JSON JavaScript Object Notation

NFC Near Field Communication

OAuth Open Authentication

OCR Optical Character Recognition

OIDC OpenID Connect

REST Representation State Transfer

RFID Radio Frequency Identification

SSL Secure Sockets Layer

SP Service Provider

TLS Transport Layer Security

UD User Device

UI User Interface

UX User Experience

XML eXtensible Markup Language

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

11

1 Introduction

The Identity Acquisition and Integration platform is among the major components of the INCOGNITO
architecture. This platform plays a major role in most of the piloting activities and use cases of the
INCOGNITO platform since it facilitates the seamless integration of the multiple soft proofs of identities
(both physical and online) of a user. The purpose of this document is to provide all the details about the
architectural design and implementation of the Identity Acquisition and Integration platform and the
broader Identity Consolidator (IDC) platform of INCOGNITO. The IDC platform is central to INCOGNITO's
architecture and will integrate all the modules that will be implemented in the context of WP3, WP4, and
WP5.

First, we provide a generic description of the architectural design of the Identity Acquisition and
Integration platform and the other modules of the IDC that together form this platform and enable the
acquisition and integration of the multiple identity attributes of a user. Next, following the defined
architecture, we provide a detailed description of the implementation and all the functionalities
supported by the platform. Last, we also provide a description of the Identity Attributes Storage schema,
which holds the acquired and normalized identity information of the users.

We note that the implementation of some of the modules of the Identity Acquisition & Integration
platform and the Identity Consolidator in general, reported in this deliverable, was initiated during the
ReCRED project and have also been reported in Deliverable 12 of ReCRED. However, we clarify that in the
context of Task 4.1 of INCOGNITO we have worked across improving the security, User Experience (UX),
performance, deployability, and scalability of these modules. At the same time, we have implemented all
the new functionalities required by INCOGNITO such as the implementation of: 1) active authentication
of the RFID-enabled identity document scanning using NFC, which allow us to identity and defend against
cloned identity documents; 2) a more reliable identity integration and normalization process; 3)
acquisition of biometric features from biometric identity documents; and 4) a remote Identity verification
process, leveraging the WebRTC protocol, which increases the confidence score and credibility of a user
on the platform. Moreover, in the context of INCOGNITO and Task 4.1, we have also performed all the
required modifications on the back end of the Identity Consolidator that will facilitate the implementation
of the modules and functionalities defined by tasks T4.2 and T4.3 of WP4, as well as their integration with
the Identity Consolidator platform. More details about the specific work done for each module can be
found in the beginning of each section.

Last, it also worth noting that, the implementation of the modules of the IDC is a work in progress as the
effort defined in T4.2 and T4.3 requires the continuous development and enhancement of the backend
and front-end of the modules reported in this deliverable. For instance, we will continue updating the
schema of the Identity Attributes Storage, the Identity Attributes Storage REST API, and the IDC 3rd Party
API for the purposes of T4.2 and T4.3.

1.1 General Overview of the Identity Acquisition and Integration Platform

The Identity Acquisition & Integration platform is one of the major components of the INCOGNITO
architecture since it facilitates the seamless integration of the multiple soft proofs of identities of a user.
More specifically, this platform is responsible for horizontally binding the online identities of a user and

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

12

vertically binding the physical identities of a user to independent verifiable identity attributes. The Identity
Acquisition & Integration platform offers the required web and mobile interfaces for quickly acquiring the
multiple diverse identity attributes of a user from his physical identity documents (i.e., national ID card)
and online identities (i.e., Facebook). Using the developed interfaces users can voluntarily submit identity
attributes and proofs of online account ownership in order to achieve the consolidation of their physical
and online identities and have access to additional functionalities related to their submitted identity
attributes. The Identity Acquisition and Integration platform consists of the following modules: 1) Physical
Identity Acquisition and Verification module; 2) Online Identity Acquisition module; 3) Identity Integration
and Attributes Normalization module; 4) Identity Attributes Storage; 5) Identity Attributes Storage REST
API; and the 6) IDC 3rd Party REST API.

First, the Physical Identity Acquisition module is responsible for the acquisition and validation of the
identity attributes of the user from the multiple soft proof of physical identities (e.g., national ID card,
ePassport, utility bills, university certificates, etc.) in a secure and privacy preserving manner. Next, the
Online Identity Acquisition module offers the required functionality for the acquisition of the identity
attributes of the user from his/her online accounts (such as Facebook, or any other Identity Provider (IdP)).
The Online Identity Acquisition module communicates with IdPs using federated authentication protocols
(such as OpenID Connect [1] and OAuth [2]). Furthermore, the Identity Integration and Attributes
Normalization module is responsible for the normalization and integration of all the identical attributes
of the user assigning them a normalized value and a confidence score.

Next, all the acquired, verified, and normalized identity information of the users will be securely stored in
the Identity Attributes Storage and all the modules of the Identity Acquisition and Integration platform
and the IDC in general will be able to interact with the Identity Attributes Storage through the Identity
Attributes Storage REST API. Last, all the other entities of the INCOGNITO architecture like Service
Providers and Identity Providers are able to communicate with the IDC for requesting or storing identity
attributes of the users using the IDC 3rd Party REST API.

The rest of this document is structured as follows. Section 2 defines the architecture of the first version
of the Identity Consolidator, which includes all the modules that are introduced and consist the Identity
Acquisition and Integration platform. Section 3 describes the Physical Identity Acquisition and Verification
module, while Section 4 provides all the details of the Online Identity Acquisition module. Next, Section 5
describes the Identity Integration and Normalization module. Section 6 provides a description of the
schema of the Identity Attributes Storage. Last, Sections 7 and 8 provide the implementation details and
the documentation of the Identity Attributes Storage REST API and the IDC 3rd Party REST API,
respectively. We conclude in Section 9.

2 Identity Acquisition and Integration Platform

The Identity Acquisition and Integration platform is one of the major components of the INCOGNITO
architecture since it facilitates the seamless acquisition, verification, and integration of the multiple soft
proofs of identities of a user and online accounts. This platform is responsible for vertically binding all the
physical identities of the user and for horizontally binding the online identities of the user into
independent verifiable identity attributes. Through the developed Identity Acquisition and Integration
web and mobile platforms, users are able to submit proofs of their real-world identities and proofs
account ownership and have verifiable identity attributes in the INCOGNITO platform that can later use

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

13

to access third party services on the Web. Figure 1 below depicts the architecture of the first of the initial
version of the IDC which includes all the modules that are part of the Identity Acquisition and Integration
platform.

Figure 1. Identity Acquisition and Integration Platform

Initially, this platform contains the Physical Identity Acquisition and Verification module, which is
responsible for securely acquiring and verifying all the identity information of a user from his/her real-
world identity documents. The functionality of this module is exposed to the users through web and
mobile application interfaces, which allow us to leverage smart trusted-computing enabled devices (e.g.,
mobile phones) to securely acquire all the physical characteristics and the information included in the
real-world identities of the users. In addition, this module uses trusted software paths of commodity
devices to securely capture, through the device's camera device, pictures of the user and his/her physical
identity documents. Identity information of the users (i.e., location) that are used for verification of his
identity attributes are captured though the sensors available on commodity mobile devices. Upon
acquisition of all the users' identity information, we use various verification algorithms in order to validate
all the collected identity information. The identity verification process uses existing techniques (such as
OCR) and peer-to-peer (crowdsourcing) techniques. Automated verification is established on the acquired
photos of the users using face detection, face recognition and OCR. Peer-to-peer verification using

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

14

crowdsourcing techniques takes place to verify that the information on the acquired photos match the
declared identity information and physical characteristics of the users. All the verified identity information
is then stored in the Identity Attributes Storage as independent verifiable identity attributes. The Identity
Acquisition and Verification module supports additional verification of the collected identity information
through remote identity verification by trained professional auditors leveraging the WebRTC protocol (see
Section 3.2.3).

We note that, having enough information about a user, the Identity Acquisition and Verification module
is in place to infer other identity attributes by aggregating the collected identity information of a user. For
example, knowing that a user is between the age of 18 to 22 and he has not yet submitted a bachelor’s
degree, we can assume with high confidence that he is still a student at a university.

The horizontal binding of the various online identities of a user (e.g., Facebook, Google+, etc.) is performed
by the Online Identity Acquisition module. For each online account an online authentication and
authorization process using federation authentication protocols (i.e., OpenID Connect) is required so that
the user give explicit authorization to the Online Identity Acquisition module to access and retrieve his
account's personal information. Following the authentication process, the attributes acquisition takes
place, and the collected attributes are stored in the Identity Attributes Storage.

At the same time, the Identity Integration and Normalization module, which runs as a background service,
is responsible for the normalization of all the collected identity information of the user into independent
verifiable distinct identity attributes and for assigning a confidence to each normalized attribute. In other
words, it is responsible for aggregating and connecting the acquired online and physical identity attributes
of the user, as well as for inferring the veracity of the claimed identity attributes via means of statistical
data analysis techniques. The Identity Integration and Normalization module is also responsible for
assigning confidence scores for the veracity of the attributes for labelling identity attributes based on their
origin. In the end, all the normalized attributes are stored in the Identity Attributes Storage of the IDC.

All the aforementioned modules interact with the Identity Attribute Storage using the Identity Attributes
Storage REST API. This API enables all the previously described modules to interact with the Identity
Attributes Storage for READ, WRITE, and UPDATE the user's identity information. On the other hand,
external entities outside the IDC and third parties, are able to communicate with the IDC and its Identity
Attributes Storage.

Last, users will be able to authenticate and interact with the IDC and the web and mobile applications of
the Identity Acquisition and Integration platform various diverse authentication mechanisms like a FIDO-
enhanced OpenID Connect mechanism, which is described in other deliverables of INCOGNITO.

2.1 Identity Consolidator Platform & Identity Acquisition and Integration Web/Mobile Application

The Identity Consolidator platform integrates multiple modules/platforms that together offer to the user
a unique identity acquisition, verification, and management solution. These modules are the following: 1)
Physical Identity Acquisition and Verification module; 2) Online Identity Acquisition module; 3) Identity
Integration and Normalization Module; 4) Consent Management module; and 5) Credentials Management
module. Modules (1), (2), and (3) are the core components of the Identity Acquisition and Integration
platform. A detailed description about the design and implementation of the other modules will be
provided in future deliverables. All the above modules are communicating with the Identity Attributes
Storage through the Identity Attributes Storage REST API.

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

15

Extending ReCRED. We note that the initial design of the Identity Consolidator platform is influenced by
the ReCRED project and its IDC component. Also, the implementation of some of the modules of the
Identity Acquisition & Integration platform and the Identity Consolidator initiated during the ReCRED
project and have also been reported in Deliverable 12 of ReCRED. However, in task T4.1 of INCOGNITO
we built upon ReCRED's IDC design and implementation by improving the security, UX, performance, as
well as performance, deployability and scalability using virtualization (i.e., by deploying modules in
separate Docker Containers). In addition, we have also completely redesigned and re-implemented some
of the modules following the latest software design guidelines and using latest programming language
frameworks (e.g., PHP Laravel1 v.8, Node.js Express.js framework2).

In this context, we have developed and deployed a Web and a Mobile application that integrates under
one platform all the primary modules of the IDC. This web application has been developed using HTML5,
JavaScript ES6, and PHP [3] and is running on an Apache Server [4] at the Cyprus University of Technology
datacenter. The communication between the clients and our servers is encrypted and secured as a result
of an SSL/TLS certificate that we have installed at our server. Figure 2 depicts the main page of the IDC
from where the user is able to access all the modules that the IDC offers, including but not limited to the
modules of the Identity Acquisition and Verification platform. Figure 3 shows the respective page in the
INCOGNITO mobile application. The user is able to access the main page of the Web and mobile
application only if he/she has already authenticated against the Identity Consolidator and a secure session
exists.

Figure 2. Identity Consolidator platform Web application main page

1 https://laravel.com/
2 https://expressjs.com/

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

16

Figure 3. Identity Consolidator Mobile Application

3 Physical Identity Acquisition and Verification Module

The Physical Identity Acquisition and Verification module of the IDC is responsible for vertically binding
the real-world identities of the user. Its main purpose is to collect all the identity information from all the
diverse types of the real-world identities of a user (e.g., national ID Card, biometric passport, utility bills,
university degree certificate, driving license, etc.), verify them and convert them into independent
verifiable identity attributes.

Extending ReCRED. Here it is important to note that the implementation of the Physical Identity
Acquisition and Verification module was initiated in the ReCRED project and has been reported in
Deliverable 12 of this project. However, we also note that although we kept the same look and feel, in the
context of task T4.1 of INCOGNITO, we have re-implemented this module using the latest version of PHP
Laravel framework (v.8) [5] with extensive refactoring of the codebase. Furthermore, we have also
performed several other security and performance improvements. More specifically, we have made the
following notable additions/improvements to the Physical Identity Acquisition and Verification module:

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

17

1. We have re-implemented the automated identity verification processes using the latest and more
accurate machine learning algorithms for face detection and recognition, such as the one
available here, which has an accuracy of 99.38%.

2. In the context of the profession certificate acquisition and verification we have added support for
the university certificate of a user which can be used as a proof for his/her qualifications.

3. We have increased the security of the RFID-enabled biometric identity document scanning by
implementing Active Authentication [6], which allows to detect and defend against forged or
cloned biometric identity documents.

4. Leveraging recent advancements in virtualization we have also deployed the Physical Identity
Acquisition and verification module as a separate docker container so that it can easily scale when
this is required.

The Physical Identity Acquisition module has been implemented as a web application for desktop
computers and as a mobile application. In the rest of this section, we describe in detail all the
functionalities supported by the current version of the Physical Identity Acquisition and Verification
module as it is central for the understanding of this deliverable.

The Physical Identity Acquisition and Verification module is subdivided into two main processes, the
identity acquisition and the identity verification process. The identity acquisition process is the one that
requires users’ involvement at most and involves the acquisition of the physical characteristics of the
users, as well as the identity information included in their physical identity documentation. This process
makes use of the trusted paths on the devices in order to enable the users to securely capture photos of
their face and their physical identity documentation. Additionally, the physical characteristics of the users
are captured (such as location) by exploiting existing techniques and the available sensors on the devices.
All the captured pictures are encrypted and securely stored in a protected directory in the IDC server while
the acquired identity information is securely stored in the Identity Attributes Storage through the Identity
Attributes Storage API. In general, the physical identity acquisition offers the following: 1) acquisition of
all the information included in the real-world identity documents of the user; 2) user physical address
information acquisition; 3) management of the collected user's identity information; and 4) acquisition of
information included in biometric (RFID-enabled) identity documents using NFC.

On the other hand, the identity verification process uses various secure methods for the verification of all
the acquired user's identity information. More precisely, for the identity verification process we employ
crowdsourcing techniques and other automated means such as Optical Character Recognition (OCR), face
detection and recognition to verify all the collected identity information, identity user pictures, and the
physical characteristics of the users. The physical identity verification process also offers a higher
assurance verification process to verify a user's identity information through remote identity verification
using the WebRTC protocol [7].

3.1 Physical Identity Acquisition

Physical identity acquisition enables users to initiate the process for verifying their real-world identities.
Currently, the developed Physical Identity Acquisition module allows users to verify the following Physical
Identity documents:

i. Identity Card

ii. Passport

https://github.com/ageitgey/face_recognition

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

18

iii. Profession Certificate (i.e., university degree certificate)

iv. Driving License

When choosing to verify a specific identity document the application requests from the user to declare
the identity information included in the document like his name, surname, document number, date of
birth, etc. After declaring the requested information, the user is requested to capture a photo of his whole
identity document from his device’s camera. The, the user is requested to crop multiple parts from his
identity document photo and also capture photos of his face from the device’s camera.

Furthermore, physical identity acquisition includes the acquirement of additional physical characteristics
of the users (e.g., his location) for verification purposes that will be described in the identity verification
section. Physical Identity Acquisition process allows users to declare his work and/or home address. For
the verification of these addresses the application allows users to choose between two different methods
that will also be described in the next section.

Moreover, the Physical Identity Acquisition module offers to the users some additional methods to
declare and verify their identity attributes. First, a user is able to verify his identity remotely by presenting
his/her identity document to a verifier via real-time video conference using WebRTC. The second method
allows users to scan their NFC-enabled identity documents. This functionality enables the ease and secure
acquirement of identity attributes without any further verification. Below we describe each one of the
supported functionalities of the Physical Identity Acquisition process.

3.1.1 Initiate Physical Identity Acquisition process

Through the physical identity acquisition application, the user is able to initiate the identity acquisition
and verification process for various identity documents. Initially, the user is able to choose among his
identity card and passport. After the user has verified one of the two identity documents then he is able
to initiate the acquisition and verification process for his profession certificate (university certificate) and
driving license. As soon as the user has chosen the identity document that he wants to verify then he is
requested to declare the identity information that are included in the document. This screen in the

implemented web application is shown in Figure 4 below.

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

19

Figure 4. Declare Physical identity document information

3.1.2 Capture Physical Identity Document and User Face Pictures

The Physical Identity Acquisition module, in order to be able to generate the peer-to-peer audits and verify
the declared identity information, it requests from the user to capture photos of his identity document
and also of his face. Initially, the application requests from the user to capture a photo of his whole identity
document. After capturing and uploading the photo of his whole identity document, the user is presented
with a list of required actions requiring his to crop multiple parts from the captured identity document

photo as shown in Figure 5. In the case of the identity card these parts are the document number, the
name and surname, the face photo included in the identity document and the date of birth. In the case of
the passport the user is requested to crop all the aforementioned and the Machine-Readable Zone (MRZ)
field included in the passport also. Here, it is important to mention that all the users’ captured photos are
encrypted using AES 128-bit encryption and are securely stored in a private directory in the Identity
Consolidator server. Additionally, when a physical identity document is successfully verified all the related
photos are deleted from the system.

3.1.2.1 Cropping parts of the Identity document photo
As mentioned above, the user is requested to crop multiple parts of his whole identity document photo.
We have implemented this functionality using Jcrop, an open-source API for image cropping written in
JavaScript. This API allowed us to add cropping functionality to our application. Below is a list of the parts
that the user is requested to crop depending on the physical identity document that he wants to verify:

1. Identity Card: a) Identity number; b) name and surname; c) picture of the holder as printed in the

identity card; and d) date of birth.

2. Passport: a) passport number; b) name and surname; c) picture of the holder as printed in the

passport; d) Machine Readable Zone (MRZ); and e) date of birth.

3. Profession Certificate/University Degree Certificate: a) profession/qualification; and b) name and

surname.

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

20

4. Driving License: a) name and surname; b) picture of the holder as printed in the driving license; c)

document issue date; and d) document expiration date.

3.1.2.2 Cropping User Face photos for Verification purposes
Besides cropping parts from the captured identity photo, the user is also required to capture some more
photos including a selfie for verification purposes that will be explained below in the peer-to-peer
verification subsection. He is also requested to capture a photo holding his identity document, a selfie, a
photo of the right side of his face and a photo of the left side of his face. These photos are requested only
when the user tries to verify his identity card or passport. Furthermore, in the backend of the Physical
Identity Acquisition module, as soon as the user has uploaded all the required photos for each one of the
peer-to-peer audits then the appropriate audits are issued and assigned to randomly selected users of the
system to ensure than no specific user will be assigned to audit all the parts of the identity of the user and
this ensure to ensure the protection of the privacy of the user.

Figure 5. List of required parts to crop from the captured identity document photo

3.1.3 View and Manage Physical Identity Document Information and Uploaded Pictures

The physical identity acquisition web application that we have developed offers to the users the ability to
view and manage the pictures that they have uploaded, as well as view their identity information. With
this functionality, the user is able to see all the photos that he captured for one of his physical identity
documents separately. At the same time, the user is able to delete any photo that he/she prefers to
capture and upload a new one when for example the already uploaded one is blurred. Furthermore, when
a photo is deleted, all the other photos that are related with this photo, in terms of peer-to-peer audits,
are also deleted. If the user chooses to delete an Identity document photo, then all the related to this
identity document photos are also deleted.

3.1.4 User Addresses' Information Acquisition

Besides, identity document acquisition and verification, the developed Physical Identity Acquisition
application allows users to declare and verify their address details for both their work and home address.
Using this functionality, the user has two options to declare and verify his addresses. The first is by clicking

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

21

on a map where the address that he wants to declare is and the second option is to declare the details of
the address while verifying on a map that the address that he wanted to declare is the correct one.

For the implementation of this functionality, we used the Google Maps JavaScript API [7], which allowed
us to embed a map into this functionality. In the first option where the user is able to declare his addresses
by clicking on a map, at the time when he clicks on a specific location on the map, in the background we
use the Google Maps API to get the address details (street, county/state, city, country and postal code) as
well as the coordinates of the selected location. In the second option we use the Google Maps API to get
the coordinates of the declared address and also to show to the user the exact location on a map based

on the declared address details. An example of the second option offered to the users is shown in Figure

6 below. All the methods that are used to verify the declared users' addresses will be described in Section
3.2.

Figure 6. Address information acquisition by declaring its details

3.1.5 RFID-enabled Identity Document Scanning using NFC-enabled devices

Beside the identity acquisition process from standard real-world identity documents, INCOGNITO allows
users to easily, quickly, and securely acquire identity attributes from RFID-enabled proofs of identity (i.e.,
ePassports). Using the INCOGNITO applications, users are able to scan and directly verify their identity
attributes using NFC-enabled mobile devices. The implementation of this functionality is based on the
findings of the IRMA project [8].

Taking advantage of the NFC protocol, this functionality enables the Physical Identity Acquisition mobile
application (NFC reader) to communicate with the RFID-enabled national ID card or ePassport and
securely read all the identity attributes and biometric data included in the identity document. In order the
Physical Identity Acquisition application to be able to retrieve all the identity information from the identity
document, the device needs to perform BAC (Basic Access Control) authentication [9] with the identity
document. BAC is a mechanism used to ensure that only authorized parties can wirelessly read personal
information included in RFID-enabled identity documents.

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

22

Extending ReCRED. It is important to note here that a protype of this functionality was implemented and
reported in Deliverable 12 of the ReCRED project. However, in the context of task T4.1 of INCOGNITO we
have extended this prototype implementation with several improvements, namely: 1) we have
implemented Active Authentication that allows us to detect and defend against forged or cloned
biometric identity documents, thus increasing the security and TRL level of this functionality; 2) we have
implemented the acquisition of additional biometric data such as the fingerprint and face of the holder of
the document; and 3) we have implemented all the required front-end and back-end functionality for the
verification and storage of the acquired information. For the sake of understanding what we offer through
this functionality we provide a detailed description of the RFID-enabled biometric identity document
scanning using NFC below.

Active Authentication. Next, to enhance the security of our solution, we have also implemented Active
Authentication (AA). Active Authentication is based on asymmetric cryptography and it is performed so
that we can detect and prevent a cloned/forged biometric identity documents to be read as an authentic
one. In our implementation we are performing Active Authentication in a slightly different way than the
other standard biometric identity document scanners. In our case, we are performing remote Active
Authentication instead of local because we want our server to be able to verify whether the data read
from an RFID chip of a biometric document belongs to the genuine document. In a remote Active
Authentication scenario, the server acts as the verifier while the user device (biometric document reader)
acts just as a proxy that scans the data from the document and submits them to the server. In this scenario,
the server generates a random challenge which is sent to the passport through the INCOGNITO mobile
application. The challenge is signed by a private key residing on the biometric document's chip and the
INCOGNITO mobile application reads the signed challenge, the public key of the biometric document, as
well as all the other identity information and biometric data of the user and submits all of them to the
backend for verification and storage. Once the server has received all the information, it uses the public
key to verify the signed challenge and if everything is fine then the identity information of the user is
stored securely in Identity Attributes storage.

For the implementation of this functionality, we make use of JMRTD library [10]. JMRTD is an open-source
Java library that implements the Machine-Readable Travel Document (MRTD) standards as specified by
the International Civil Aviation Organization (ICAO) [11]. Part of this implementation is a host side Java
API, which is the one that we actually use in order to read, decode, and validate the information included
in the RFID chip of the identity document. As soon as the Physical Identity Acquisition application had
successfully acquired all the identity attributes of the user included in his identity document, it uses the
Identity Attributes Storage API to securely store them in the Identity Attributes Storage of the Identity
Acquisition and Verification platform.

Below there are there are the screenshots of the implemented functionality. We have implemented this

functionality for both biometric passports and biometric identity cards. Figure 7 shows the first page of
the process that a user has to follow in order to verify his biometric ID document where we explain to him

the steps that he needs to follow. Next, as shown again in Figure 7 the user is requested to choose the
biometric identity document type that he/she wants to scan (ePassport or national eID cards). After the
user has chosen the document that he wants to scan we request from him to enter some basic information
(Document number, Expiration date and date of birth) in order to perform BAC authentication and be able

to read the data stored on the RFID chip of the identity document as shown in Figure 8. The next thing
that the user has to do is to place his mobile device on top of his ID document in order to communicate

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

23

with the installed RFID chip. After that, BAC is performed and if the provided information is correct then
we send a challenge message initially received from the server to be signed by the private key included
biometric document chip. Once the challenge has been signed, we also read the data stored on the

document and submit them to the server (see Figure 9). The server then performs Active Authenticate
verifying the signed challenge and if the signature is valid then the data are stored in the Identity
Attributes Storage of the IDC.

Using the implemented functionality, we are also able to acquire the biometric features (e.g., fingerprint
and face of the holder) included in the biometric identity documents of the user. More precisely, if
available, we are retrieving and storing the fingerprints, face, and signature of the holder as printed in
his/her biometric document. This biometric data can then be leveraged to authenticate the user either as
the first factor of authentication or as part of a failover authentication process in case the user loses
his/her device. In this way we are also able to provide the notion of document-to-device authentication
to the user. In a sense, a similar way of document-to-device authentication is also applied in almost all the
airports where the user authenticates him/herself against the airports security boards before proceeding
to the departing gates. Here, we note that we have also investigated other ways of incorporating
biometric features included in the identity documents of the users like for example using digital signatures
extracted from QR-codes and barcodes, however, we elect to implement and consider the biometric
features included the physical identity documents of the users (i.e., ePassport) as it is something that
users are more familiar with and it is a biometric feature that can be easily provided and used by all the
intended users of the INCOGNITO platform.

3.1.5.1 Near-Field Communication (NFC) Technology
NFC technology is a form of secure contactless communication between smart devices. Such contactless
communications allow users to wave the smart device over an NFC compatible device or card to send or
receive information without the need to touch the devices together and with no extra steps for setting up
the connection. NFC technology allows a device, known as a reader or active device, to create a radio
frequency current that communicates with another NFC compatible device or a small NFC tag holding the
information the reader wants. Passive devices, such as the NFC tag in smart posters, store information
and communicate with the reader but do not actively read other devices. Peer-to-peer communication
through two active devices is also a possibility with NFC. This allows both devices to send and receive
information.

3.1.5.2 Biometric Identity Documents (ePassport/national eID card)
Biometric identity documents are also known as ePassport or digital passports or national eID cards. For
example, ePassport is an improved paper and electronic passport which contains all the personal
information of a person as well as his biometric information (e.g., fingerprint or biometric photograph of
the owner) and can be used to authenticate his/her identity. ePassports use contactless smart card
technology by having an embedded RFID chip. All the document and chip characteristics are documented
by the International Civil Aviation Organization (ICAO) [11]. In order a reader device to be able to scan an
ePassport and read the data stored electronically in the passport's RFID chip, it first need to authenticate
against the identity document. Public key infrastructure (PKI) is used for the authentication and this makes
it difficult for a malicious user to forge when all the proposed security measurements are enforced.

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

24

Figure 7. RFID-enabled Identity document verification guidelines (left) and prompt to choose the
document to be verified (right)

Figure 8. Enter Identity document required information for BAC authentication

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

25

Figure 9. Data from the biometric passport has been read. Data has been anonymized for privacy
reasons.

3.1.5.3 Biometric Identity Documents' Security Mechanisms
Biometric identity documents are equipped with various security mechanisms in order to defend against
various attacks. More precisely, these mechanisms are the following:

1. Non-traceable chip characteristics: When a reader tries to communicate and scan the RFID chip
of an ePassport, the chip each time replies with a different chip number. This prevents malicious
users from tracing ePassport chips.

2. Basic Access Control (BAC): is used to protect the communication channel between the RFID chip
and the reader. The reader application needs to provide some basic information derived from the
Machine-Readable Zone (MRZ) of the ID document such as date of birth, expiration date,
document number, before the data stored in the RFID chip can be read.

3. Passive Authentication (PA): Passive authentication is used to detect modifications of the date
stored on ePassports chips. The RFID chip contains a file (SOD) that stores hash values of all files
stored in the chip (picture, fingerprint, etc.) and a digital signature of these hashes. The digital
signature is made using a document signing key which itself is signed by a country signing key. If
a file in the chip (e.g., the picture) is changed, this can be detected since the hash value is
incorrect. Readers need access to all used public country keys to check whether the digital
signature is generated by a trusted country.

4. Active Authentication (AA): Active Authentication is used to prevent cloning of ePassport RFID
chips. The chip contains a private key that cannot be read or copied, but its existence can easily
be proven. AA is based on a challenge response mechanism and allows the reader to verify that
the data scanned from an RFID chip belongs the genuine ePassport. In our implementation AA is
performed between the server and the ePassport because we want to perform remote NFC ID
document scanning.

5. Extended Access Control (EAC): EAC offers the required functionality for checking the authenticity
of both the chip and the reader. Furthermore, it uses stronger encryption than BAC and is typically

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

26

used to protect the biometric information (e.g., fingerprint, iris, etc.) stored in the RFID chips. All
the European Union’s ePassports use EAC.

6. Supplemental Access Control (SAC): This access control scheme has been introduced later on for
address BAC weaknesses.

7. Shielding the RFID chip: By shielding the RFID chip of the ePassport we can prevent unauthorized
reading of the document. Some countries have integrated a very thin metal mesh into the
passport's cover to act as a shield when the passport cover is closed.

3.2 Physical Identity Verification

The Physical Identity Verification process includes all the methods used for the verification of all the
acquired identity information of the users. Among the methods used for verification are peer-to-peer
audits using crowdsourcing techniques, and automatic verification methods using OCR, face detection,
and face recognition techniques.

Extending ReCRED. Here we clarify that the implementation of the physical identity verification process
was initiated and reported in Deliverable 12 of the ReCRED project. In the context of INCOGNITO, we have
performed the following improvements: 1) we have refactored the code of all the physical identity
verification processes in order to improve performance and decrease the time required for the automatic
identity verification process to finish; and 2) we have implemented the automated identity verification
processes using latest and more accurate machine learning algorithms for face detection and recognition3
hence increasing the accuracy of our face detection and recognition feature to 99.38%. In this section, we
provide a detailed description of all the identity verification processes that we enforce as so that the
reader has all the required information to understand all the methods and processes that we employ to
verify the acquired users' identity information.

Furthermore, all the implemented automatic identity verification methods have been deployed as docker
containers on the backend of the Physical identity Acquisition module. Additional identity document
verification methods have been implemented in the context of INCOGNITO. That is, we leverage the
WebRTC protocol and we implemented a remote identity document verification process during which, a
professional verifier communicates with the user that is to be verified through a video call initiated within
the Identity Acquisition and Integration platform and the verifier verifies all the declared and acquired
identity information of the user.

3.2.1 Peer-to-Peer Verification Using Crowdsourcing Techniques

As mentioned in the Physical identity Acquisition subsection, when a user has captured and uploaded the
required photos for each identity document, in the backend of the Physical Identity Acquisition module
we assign peer-to-peer audits to randomly selected users. These audits are crowdsourced to other users
in order to verify that the information included in the acquired photos of another user match his declared
personal identity information. Watermarking and cropping techniques are used to ensure that nobody
will have access to reusable or forgeable photos of the users’ physical identity documents. Additionally,
we implemented this functionality so that no more than one audit is crowdsourced to each auditor in
order to prevent them to have access to more than one identity document photos of the audited user.

3 https://github.com/ageitgey/face_recognition

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

27

For each identity document that is supported by the Physical Identity Acquisition module we have
implemented different audit types where each audit verifies a different identity attribute of the user.
These types are:

1. Identity Card and Passport:

a. Identity Document Number. The auditor is requested to verify whether the identity number shown

in the cropped identity card photo matches the identity number that the audited user declared.

b. Name and Surname. the auditor is requested to verify whether the name and surname shown in

the cropped identity card photo matches the name and surname that the audited user declared.

c. Selfie Holding Identity Document. the auditor is requested to verify whether the face of the user

in the captured photo matches the identity card face photograph that the user holds in his hand.

d. Redacted Identity Document. the auditor is requested to verify whether the redacted identity

document in the photo is an identity card issued by the country that the audited user declared.

e. Identity Document Holder Photograph. the auditor is requested to verify that all the photos

include the same person and whether this person is performing a requested move in his front face

photo.

f. Date of Birth. the auditor is requested to verify whether the date of birth shown in the cropped

identity card photo matches the date of birth that the audited user declared.

2. Profession Certificate

a. Name and Surname. the auditors are requested to verify whether the name and surname shown
in the cropped profession certificate photo matches the name and surname that the audited user
declared.

b. Redacted Profession Certificate. the auditor is requested to verify whether the profession
information shown in the redacted profession certificate photo matches the profession that the
audited user declared.

3. Driving License

a. Name and Surname. the auditors are requested to verify whether the name and surname shown
in the cropped driving license photo matches the name and surname that the audited user
declared.

b. Driving License Holder Photograph. the auditors are requested to verify that all the photos
include the same person and whether this person is performing a requested move in his front face
photo.

c. Driving License Issue Date. the auditor is requested to verify whether the date shown in the
cropped driving license photo matches the driving license issue date that the audited user
declared.

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

28

d. Driving License Expiration Date. the auditor is requested to verify whether the date shown on
the cropped driving license photo matches the driving license expiration date that the audited
user declared.

e. Redacted Driving License. the auditor is requested to verify whether the redacted driving license
in the photo is a driving license issued by the country that the audited user declared.

When all the audits of a user have been successfully performed by the responsible auditors and if all of
them are successful then the specific identity document is considered as verified and all the identity
attributes related to this identity document are independently stored as verified into the Identity
Attributes Storage. An example of crowdsourced audit is shown in Figure 10.

Figure 10. Peer-to-peer audit of the identity document number of a user

3.2.2 Automated Verification Techniques

For the verification of the acquired identity information and uploaded photos of the user, in addition to
the peer-to-peer verification the Physical Identity Acquisition module uses existing techniques like OCR,
face detection etc. We employ such techniques in various parts of the identity acquisition and verification
process in order to automatically verify the acquired identity information and pictures of the users. More
precisely, we employ the following techniques:

a. Optical Character Recognition (OCR): is the mechanical or electronic conversion of images of
typed, handwritten or printed text into machine-encoded text. We employed this technique when
a user crops and uploads parts of his identity document photo in order to first detect that a text is
included in each of those images and to also extract this text. In the background of our application,
we extract the text from the images and we then compare it against the appropriate declare
identity information to verify that they match. We have implemented this functionality using the
phpOCR library, which is an open-source OCR library written in PHP that allowed us to extract text
from the images that users upload.

b. Face detection: Face detection or facial detection is a computer technology used in a variety of
applications that enables the detection of human faces in digital images. In the Physical Identity

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

29

Acquisition module, we employ face detection to determine and verify whether a human face is
included in the identity document photo and in all the photos that the user is required to capture
photos of his face. We implement this functionality as a Python module, using the face_recognition
Python library4, and we deploy it on the backend of the Physical Identity Acquisition and
Verification module. We prefer to have automated face detection deployed as a backend service
instead of using a cloud API because the images that are process contain users’ sensitive personal
information that we want to protect.

c. Face recognition: Face recognition or facial recognition systems are capable of identifying or
verifying that the person included in an image is the same person included in another image or a
face database. We employ face recognition in our application to determine whether the person
that is included in a user’s cropped identity photograph is the same person with the one included
in the front face photo of the user. For the implementation of this functionality, we use the same
Python library used for the implementation of the face detection functionality.

3.2.3 Remote Identity Verification using the WebRTC Protocol

The Physical Identity Acquisition and Verification platform offers an extra layer of identity verification
above the previously reported ones, which the users have the chance to request voluntarily. More
precisely, we have developed another functionality that enables users to prove their identity to a
professional verifier of INCOGNITO remotely through a real-time video conference. A user may ask for
additional remote identity verification in order to increase the confidence score of his verified identity
attributes, and thus his credibility on INCOGNITO. During remote identity verification, users are able to
prove their identity through real-time video and audio presentation of their physical identity document
to the professional verifier and the verifier is in place to ask further questions in order to completely verify
the identity of the remote user. This functionality has been implemented using the WebRTC protocol
within the Physical Identity Acquisition Web application.

For the implementation of this functionality, we use the PeerJS library [13], which is a JavaScript library
that wraps the browser’s WebRTC implementation and provides a complete and easy-to-use peer-to-peer
connection API. In order to initiate the real-time identity presentation, the only thing that a user has to
do is to enter the email of the verifier and then the appropriate user is contacted to setup the connection

between the two peers. Below there are some screenshots of this functionality (see Figure 11 and Figure

12).

Web Real-Time Communication (WebRTC) Protocol: WebRTC is a collection of communication protocols
and APIs that enable real-time communication including video and audio, over peer-to-peer (browsers)
connections. It is an open-source project that enhances browsers, mobile applications, and Internet of
Things (IoT) devices with real-time communication capabilities.

4 https://github.com/ageitgey/face_recognition

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

30

Figure 11. Screen where the verifier declares the email address of the user that wants to be verified
using remote identity verification

Figure 12. Remote Identity Verification using the WebRTC protocol. Faces hidden for privacy reasons

3.3 Physical Identity Acquisition Mobile Application

Besides the Physical Identity Acquisition Web application, we have also implemented an Android
application using latest available technologies for Android implementation (AndroidX and RxJava), which
runs on any android mobile device with Android 5+. This application supports the same functionalities as

the Physical Identity Acquisition Web application. Figure 13 below shows the main page of the Physical
Identity Acquisition Android application.

For the implementation of the Physical Identity Acquisition android application exploited the capabilities
of the mobile devices in order to securely capture the identity information and physical characteristics of
the users. Since in our application we are using all the available sensors on the devices (such as camera,

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

31

GPS, etc.), a user has to authorize the application with the appropriate permissions to access theses
sensors. Furthermore, in order to enable the secure capturing of photos in our application and ensure
that the submitted identity documentation photos have been captured from the device’s camera we
utilize the Trusted Execution Environment (TEE) offered in commodity Android devices.

All the identity information acquired from the Physical Identity Acquisition mobile application is stored to
the Identity Attributes Storage using the Identity Attributes Storage API. The description for the supported
functionalities of the Physical Identity Acquisition mobile application is included in the Physical Identity
Acquisition and the Physical Identity Verification subsections above.

Figure 13. Screenshots of from some pages of the Physical Identity Acquisition Mobile Application

3.4 Physical Identity Acquisition Module Internal REST API

Besides the functionalities described above, the Physical Identity Acquisition module offers the Physical
Identity Acquisition internal API, which is used by all the other modules of the Identity Consolidator
platform when this is needed.

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

32

For the implementation of the Physical Identity Acquisition Internal API, we use Node.js Express.js
framework, which is a framework for the development of Web applications and REST APIs. The REST
operations that the current version of the Physical Identity Acquisition Module Internal REST API supports
is described below.

3.4.1 Physical Identity Document Verification Status

Description: Provides information about the verification status for a specific identity document of a
user.
Operation: GET
Request:

GET /physical_id_acquisition_module/api/v1/document_verification_status/{user_id}/{document_type}
Accept: application/json

Response:

200
Content-Type: application/json

{
 "user_id":"1",
 "document_type":"identity_name",
 "verified":"true",
 "verification_progress":"50%"
}

Description of Elements in Request URI:

Element Description Valid Value

user_id User’s unique Identifier An integer up to 5 digits

document_type
Physical Identity document
type

identity, passport, profession_certificate,
driving_license

Description of Elements in Response Body

Element Description Required Valid Value

user_id User’s unique Identifier
Yes An integer up to 5

digits

document_type
The type of the physical identity
document specified in the request

Yes identity, passport,
profession_certificat
e, driving_license

verified

Declares whether the user has
successfully verified one of his basic
physical identity documents (identity
card or passport)

Yes

TRUE or FALSE

verification_progress
A percentage that represents the
progress of the user on successfully

Yes
Float

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

33

verifying the specified identity
document

3.4.2 Identity Attribute Verification Status

Description: Provides information about the verification status for the specified identity attribute of a
user.
Operation: GET
Request:

GET /physical_id_acquisition_module/api/v1/identity_attribute_status/{user_id}/{attribute}
Accept: application/json

Response:

200
Content-Type: application/json

{
 "user_id":"1",
 "identity_attribute":"identity_name_surname",
 "verified":"true"
}

Description of Elements in Request URI:

Element Description Valid Value

user_id User’s unique Identifier An integer up to 5 digits

identity_attribute
The identity attribute that
you want the verification
status

String

Description of Elements in Response Body

Element Description Required Valid Value

user_id User’s unique Identifier
Yes An integer up to 5

digits

identity_attribute
The identity attribute specified in the
request

Yes
String

verified
Declares whether the specified
identity attribute of the given user has
successfully verified or not

Yes
TRUE or FALSE

3.4.3 Store RFID-enabled Physical Identity Document Information

Description: Stores the information of the RFID-enabled Physical Identity document of a user acquired
through the NFC functionality.
Operation: POST
Request:

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

34

POST /physical_id_acquisition_module/api/v1/store_nfc_physical_id_acquisition_document_info
Accept: application/json

{
 "user_id": 287,
 "documentType": "passport",
 "documentNumber": 12345678,
 "firsName": "John",
 "lastName": "Doe",
 "dateOfBirth": "01/01/1990",
 "gender": "male",
 "country": "England",
 "nationality": "British",
 "expirationDate": "01/01/2030",
 "document_photo": "TWFuIGlzIGRpc3Rpbmd1aX.......CBwbGVhc3VyZS4=",
 "biometric_document_pk": "SAIUBNfdaps7......AA==",
 "signed_challenge": "........."
}
Response:

200
Content-Type: application/json

{
 "result": SUCCESS
}
Description of Elements in Request URI:

Element Description Valid Value

user_id User’s unique Identifier An integer up to 5 digits

documentType The type of the Physical Identity Document
String ('identity_card' or
'passport')

documentNumber
The document number in the submitted
Physical Identity Document

String

firstName
The name of the user in the submitted
Physical Identity Document

String

lastName
The surname of the user in the submitted
Physical Identity Document

String

dateOfBirth
The date of birth in the submitted Physical
Identity Document

Date

gender
The gender of the user in the submitted
Physical Identity Document

String

country
The country of the user in the submitted
Physical Identity Document

String

nationality
The nationality of the user included in the
submitted Physical Identity Document

String

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

35

expirationDate
The expiration date of the submitted
Physical Identity Document

Date

document_photo
The Base64 string of the biometric
photograph included in the submitted
Physical Identity Document

Base64 String

biometric_document_pk
The Public Key retrieved from the biometric
identity document

String

signed_challenge
The signature of the challenge message
initially sent from the server for Active
Authentication

String

Description of Elements in Response Body

Element Description Required Valid Value

result
The result of the storage of the
submitted Physical Identity Document
Information

Yes
String

4 Online Identity Acquisition Module

The Online Identity Acquisition module enables users to acquire all the identity information of a user from
his/her online accounts. It is responsible for the horizontal binding of the various online identities of a
user like Facebook, Google, etc., or any other Identity Provider. The account's identity information of the
user can be obtained in the following two manners:

1. On the one hand, the identity acquisition process is initiated by the end-user. In this case, the
Online Identity Acquisition module relies on a process defined by the OAuth2 protocol to gain
access to the identity provider and retrieve the end-user account information.

2. In the second scenario, the user can grant permission to the module to automatically obtain its
identity information from a service using Web crawlers that we have implemented, and which are
running on the backend of the IDC.

We refer to the former as user-assisted online identity binding process and to the latter as the automatic
online identity acquisition processes. Note that, the user-assisted process provides more guarantees with
respect to the veracity of the collected data since the OAuth2 authentication process requires the user to
authenticate with the specific Identity Provider and provide his/her explicit authorization to be able to
proceed and acquire his/her account's identity information.

Furthermore, all the identity information obtained by the Online Identity Acquisition module from the
multiple IdPs of supported, is stored in the Identity Attributes Storage using the Identity Attributes Storage
API. In addition, the Identity Integration Module integrates the info of a user coming from different
providers using as reference the algorithm described in Section 5.1. Figure 14 and Figure 15 shows the main
page of the Online Identity Acquisition web and mobile applications, respectively, from which the user is
able to connect his Facebook, Google, and LinkedIn account with INCOGNITO and retrieve his identity
information. Also, the user is able to collect his/her identity information from other IdPs supported by
INCOGNITO or he/she can enable the automatic online identity acquisition process and use our crawlers
to retrieve the information of his/her online accounts.

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

36

Extending ReCRED. The implementation of this module has been initiated in the ReCRED project and
reported in Deliverable 12 of that project. However, while we keep a somehow similar look and feel, we
note that we have refactored the code so that we use the latest available APIs provided by Facebook,
Google, and LinkedIn. At the same time, we have implemented from scratch the web crawlers that
perform the automatic online identity acquisition, as python headless browser scripts using Selenium5.
We have also deployed the crawlers as docker containers configured so that they can scale to multiple
instances at the same time if this is required.

4.1 User-assisted Online Identity Acquisition process

The user-assisted online identity acquisition process is based on the user authentication flow as defined
by the OAuth2 protocol which is required by all the Online Social Networks that the Online Identity
Acquisition module supports (Facebook, Google, LinkedIn) in order to authenticate and authorize a third-
party service (in this case the Online Identity Acquisition module) to access the user's account information.
Once the chooses to use the user-assisted online identity acquisition process, he/she first has to
authenticate to the respective social network. Then, the user is presented with the authorization screen
where he/she is notified about the data that INCOGNITO wants to obtain access to. At this point, the user
has to give explicit authorization to INCOGNITO to access the notified user's personal information. Upon
the authorization of the user, the online identity acquisition module obtains an allowance to collect the
user's account information and thus it proceeds to the attributes acquisition. Some attributes available in
the considered IdPs (Facebook, Google, and LinkedIn) are name/surname, date of birth, location,
education, occupation, etc. Upon successful acquisition, the collected attributes are then stored to the
Identity Attributes Storage of the IDC through the Identity Attributes Storage REST API. Note that, all the
information stored in the Identity Attributes Storage for a given IdP is always updated every time the user
chooses to authenticate with each IdP.

Figure 14. Main page of the Online Identity Acquisition Web application

5 https://pypi.org/project/selenium/

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

37

Figure 15. Main page of the Online Identity Acquisition Mobile application

Furthermore, as indicated above, the access to the supported Identity Providers is implemented using the
OAuth2 protocol, an open standard for authorization. The OAuth 2.0 enables a third-party application to
obtain limited access to an HTTP service, either on behalf of a resource owner by orchestrating an approval
interaction between the resource owner and the HTTP service, or by allowing the third-party application
to obtain access on its own behalf RFC6749 [15].

Authorization and Privacy Management: The IDC through the Online Identity Acquisition module
requests from the users their authorization to access and collect information from their profiles in various
IdPs. In the case of Facebook, in the authorization process, each attribute has a checkbox associated. The
user should select only those attributes he is willing to share with the IDC. In the case of Google, the user
cannot make such fine-grained selection. Instead, Google informs the user about the attributes to be
collected and the user can grant binary permission to collect either all or to no identity attributes.
Therefore, the user-assisted online identity acquisition process respects the privacy of the user since
information is only collected upon the explicit authorization of the user.

4.2 Automatic Online Identity Acquisition process

The automatic online identity acquisition process is on Web crawlers that we have implemented in the
context of this module for the crawling of the account information of a user from his/her profile page in
various IdPs. We note that, the automatic process does not require user authentication but does require
the user's consent by requiring the user to start the process once and the implemented crawlers will run
in the background and collect all the personal information included in the user's IdP profile page. When
the user chooses to initiate the crawling process, a pop-up message is shown to the user requesting: 1)
authorization to retrieve the public information available in his/her profile in the correspondent IdP; or 2)
the URL of its Facebook (or Google+) account. After this, the Online Identity Acquisition Module checks if
the provided URL is correct and launches the crawling process, which retrieves the public information
from the profile associated to the URL provided by the user. The collected information is stored in the

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

38

Identity Attributes Storage through the Identity Attributes Storage API. Note that, the information stored
in the Identity Attributes Storage for a given IdP is updated every time the user voluntarily initiates the
crawling process. To access the information available in the public profile of a user we have implemented
Web crawlers using the Selenium Webdriver [16], a tool for browser automation. The Selenium Webdriver
sends commands to a browser through a driver and retrieves the desired results (e.g., open a Facebook
user profile page and get his username).

Authorization and Privacy Management: In the case of the automatic online identity acquisition process,
the crawlers start collecting data only when the user has provided his consent to do so. In particular, the
pop-up message informs the user that the information collected would be the public information available
in its Facebook (or Google+) profile. Note that this information may vary across users depending on the
privacy configuration set up of each user account. Therefore, the non-assisted binding process of the
Online Identity Acquisition module respects the privacy of the user since information is only collected
upon the explicit authorization of the user.

5 Identity Integration and Normalization

This section provides the description and the implementation details of the Identity Integration and
Normalization module of the Identity Acquisition and Integration platform in general. In the context of
task T4.1, we have designed and implemented a framework for integrating and normalizing, with high
confidence, identity attributes obtained from the Physical Identity Acquisition and the Online Identity
Acquisition modules. More precisely, this framework is responsible for aggregating and consolidating the
identity information collected from the multiple IdPs of a specific user, as well as the user's real-world
identity documents. The Identity Integration and Normalization module is also responsible for assigning
confidence scores that indicate the veracity of the identity attributes and for labelling identity attributes
based on their origin. For example, identity attributes that have been verified through remote identity
verification should have a very high confidence score, while other identity attributes (e.g., email address)
acquired from the Facebook profile of the user may have lower confidence score. The IDC should be able
to convey to verifiers that it has acquired a specific identity attribute of a user through a named Identity
Provider and let the verifier determine how much it trusts the identity information of that provider.

We have implemented the Identity Integration and Normalization framework using Python and deployed
it as docker container which encapsulates a background service that runs continuously on the backend of
the IDC. This background service continuously checks, for each INCOGNITO user, the Identity Attributes
Storage. Once new identity attributes of a user exist in the Identity Attributes and these attributes have
not already been integrated and normalized, the Identity Integration and Normalization module initiates
the integration and normalization process. The integration process first needs to map the identity
attributes from different IdPs referring to the same piece of information. Once the mapping has been
completed, we have to define an algorithm to solve conflicts and chose one of the possible values for a
given attribute. We use an algorithm that relies on the Level of Assurance (LoA) associated to different
Identity Providers. In short, our algorithm, in case of a conflict between two IdPs, it selects the attribute
associated with the IdP who has the higher LoA. Once all conflicts have been solved, the consolidated
information for a user is stored in the Identity Attributes Storage.

5.1 Identity Integration and Normalization Algorithm

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

39

Here, we describe the algorithm implemented for the integration and normalization of the identity
information collected from various Identity Providers, as well as the real-world identities of a user. The
implemented algorithm is responsible for the consolidation of the collected identity information, for the
resolution of any conflicts, as well as for assigning confidence scores to each normalized identity attribute.
In the current implementation we consider N (6) data providers: 1) Physical Identity Acquisition module;
2) Remote Identity Verification; 3) Online Identity Providers (Facebook and Google); 4) Banks; 5) Telcos;
and 6) Universities. Each Data Provider has a list of predefined attributes and a predefined LoA. The
Remote Identity Verification and the Physical Identity Acquisition module have the highest LoA, and then
the other Identity Providers have lower LoAs. Let’s consider a given user U for whom we have data from
multiple different providers. The data integration and normalization processes are as follows:

A. If an attribute A is present only in 1 provider it passes immediately to the integrated profile of U
with an assigned Confidence Score (CS) equal to the LoA of the provider, in the corresponding
percentage, which provided that attribute.

B. If an attribute A is present in 2 or more providers belonging to different LoA

i. If the attribute has been collected through remote identity verification or through the
physical identity acquisition, then the value of the attribute is passed to the integrated
profile of the user and the highest CS is assigned to this attribute.

ii. If the value of the attribute matches in all Identity Providers, then the attributed is passed
to the integrated profile and the CS assigned is equal to the highest LoA, in the
corresponding percentage.

iii. If the value of the attribute does not match between the different Identity Providers, the
attribute associated to the provider with the highest LoA is selected and passed to the
integrated profile. The CS is assigned as the Highest LoA - penalization factor, in
percentage. The penalization factor (PF) increases with the number of mismatches in the
attribute value but will be in any case higher to the Highest CS - 1. Example: For a given
attribute we have 3 providers (P1 with LoA = 4, P2 with LoA = 3 and P3 with LoA = 2). The
consolidated attribute will be the one provided by P1. If P1 mismatches with only P2 or
P3 the CS will be 100 - PF1 (e.g., PF1 = 3.45 and CS = 96.55). If P1 mismatches with both
P2 and P3 the CS will be 100 - PF2 (e.g., PF2 = 6.9 and CS = 93.1).

C. If an attribute A is present in 2 or more providers belonging to the same LoA and there are
discrepancies, then there will be a predefined ranking between the providers belonging to the
same LoA and the selected value of the attribute will be the one belonging to the highest ranked
provided. For mismatches we will use a penalization factor similarly as explained in step B (iii).

In the end, the integrated profile of the user will have a final list of attributed assigned with a CS which is
easily interpretable, integer numbers will indicate info coming from 1 of more providers from a given LoA
without existing discrepancies. Whereas decimal numbers will reflect the LoA of the IdP which provided
the consolidated attribute as well the number of mismatches existing with other providers.

6 Identity Attributes Storage

This chapter defines the implemented Identity Attributes Storage data model. The designed schema is
implemented using a traditional relational database MariaDB [17], a community-developed fork of the

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

40

MySQL relational database. Note that this module serves as the central repository for the Identity
Acquisition and Integration platform and the IDC in general.

Extending ReCRED. We note that the design of the Identity Attributes Storage is influenced by the design
of the Identity Repository of ReCRED reported in Deliverable 12 of that project. However, in the context
of task 4.1 and WP4 in general, we have re-designed the database according to the needs and
requirements of INCOGNITO and we have deployed the database on the backend of the IDC as a distinct
Docker container that can only be accessed by specific other Docker containers running inside the IDC,
hence increasing the security of our database and protecting the data stored. We have also implemented
scripts that are responsible to perform daily backups of the database schema and the data stored. Also,
we will further update the Identity Attributes Storage for the needs of WP3, WP4, and WP5 and any
possible updates will be reported in the respective future deliverables of the project.

In INCOGNITO, we will maintain all the collected identity information of the users, as well as other
information required for the implementation of all the functionalities of the IDC, in this central repository
and we will also utilize a blockchain implementation where we will store proofs of verifiable identity
attributes and other information required for decentralized identity management. Details about the
implementation of the decentralized identity management platform will be provided in future deliverable
D4.2. All the other modules of the IDC can interact with the Identity Attributes Storage through the
Identity Attributes Storage REST API to store and retrieve any information needed to develop their own
functionalities. Below we provide a description of all the tables of the Identity Attributes Storage as well
as their respective fields.

6.1 Notation and Conventions

In this document we use the key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" as described in RFC21196.
Domain name examples use RFC26067.

6.2 User Account Table

This section outlines the fields in the central and preferred user profile structure.

Table Column Description

Identifier The primary key of the user in INCOGNITO.

displayName
The name that the user chooses to be displayed in all the INCOGNITO User
Interfaces for his/her account.

6 https://tools.ietf.org/html/rfc2119
7 https://tools.ietf.org/html/rfc2606

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

41

Email An email address at which the person may be reached.

emailConfirmUrl An URL to verify the user email.

verifiedEmail A boolean. True if the email has been validated.

physicalIdentityV
erificationInProgr
ess

The process of verifying (uploading photos) a specific physical identity document
and which document is this none, identity, passport, driving_license,
profession_certificate.

randomMove
A randomly selected number for each user. This number declares a specific
random move that the user is requested to do when capturing his front face photo
in physical id acquisition application.

registerDate The date of the user registration

accountType
The type of the user in the system. In Physical ID Acquisition module 0 means
administrator, 1 means a typical user and 2 means that the user is a profession
auditor in physical id acquisition platform.

accountCanceled A Boolean. True if the account has been canceled

6.3 User Physical Identities Info Table

Table Column Description

Identifier Unique identifier

primaryKey The primary key of this entry in database.

documentType The type of the physical documentation of the user. For instance, this filed will use
values such as “Identity”, “Passport”, "Profession Certificate", "Driving License",
etc.

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

42

documentNumber The number of the user’s physical documentation. This field may be the number
of his national identity or his passport number.

Gender The gender of the user on his physical identity documentation.

dateOfBirth The date of birth of the user on his physical identity documentation.

Nationality The nationality of the user on his physical identity documentation.

issueDate The issued date of the user’s physical identity documentation.

expirationDate The expiration date of the user’s physical identity documentation.

profession The profession of the user.

namesInfo The primaryKey of the namesInfo field in in the talbe User Names Info, related
with the Physical ID information

verificationInfo
Describes additional information about the verification process on each record
(single or plural) of this Contact, which MAY be by the Identity Provider's service,
or MAY be by a different service (external or peer users). Consumers SHOULD NOT
assume that this data has been verified by the Identity Provider. For more
information, see Verification Info details.

6.4 Identity Providers Data Table

This section outlines the fields in the normalized profile structure.

Table Column Description

Identifier Unique identifier

providerID The ID which identified the provider.

primaryKey Optional. A user ID number, usually chosen automatically by the system.

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

43

formatted The full name, including all middle names, titles, and suffixes as appropriate,
formatted for display. This is the Primary Sub-Field for this field, for the purposes
of sorting and filtering.

idp_formatted A Boolean, specifies if the user give his consent to the IdP in such field.

familyName The family name of this Contact, or "Last Name"

idp_familyName A Boolean, specifies if the user give his consent to the IdP in such field.

givenName The given name of this Contact, or "First Name"

idp_givenName A Boolean, specifies if the user give his consent to the IdP in such field.

middleName The middle name(s) of the user.

ipd_middleName A Boolean, specifies if the user give his consent to the IdP in such field.

Gender The gender of the user.

idp_Gender A Boolean, specifies if the user give his consent to the IDP in such field.

Birthday Date of birth in YYYY-MM-DD format. Year field may be 0000 if unavailable.

idp_ Birthday A Boolean, specifies if the user give his consent to the IDP in such field.

utcOffset The offset from UTC of this contact’s current time zone, as of the time this response
was returned.

idp_UtcOffset A Boolean, specifies if the user give his consent to the IDP in such field.

Email An email address at which the person may be reached.

idp_Email A Boolean, specifies if the user give his consent to the IDP in such field.

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

44

verifiedEmail A Boolean, indicates whether the email has been verified or not.

URL The URL of a webpage relating to this person.

idp_URL A Boolean, specifies if the user give his consent to the IdP in such field.

phoneNumber A phone number at which the person may be reached.

address1 See the address field section for details.

idp_address1 A Boolean, specifies if the user give his consent to the IdP in such field.

address2 Additional address field, in case the IdP has more than one address available.

idp_address2 A Boolean, specifies if the user give his consent to the IdP in such field.

work The workplace of the user provides to the IdP.

idp_Work A Boolean, specifies if the user give his consent to the IdP in such field.

education The education place of the user provides to the IdP.

idp_Education A Boolean, specifies if the user give his consent to the IdP in such field.

limitedData A boolean value, true if social login was able to retrieve only limited public data
from the user’s profile (for example, because the login session has expired, or the
user logged out from their account).

Trusted A boolean reflecting whether the user trusts the Identity Consolidator to store the
actual data.

updated
The current timestamp when the data is saved for the first time or is updated.

6.5 User Names Info Table

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

45

This table contains the components of the contact's real name.

Table Column Description

identifier Unique identifier

primaryKey The primary key of this entry in database.

formatted The full name, including all middle names, titles, and suffixes as appropriate,
formatted for display. This is the Primary Sub-Field for this field, for the purposes
of sorting and filtering.

CS_formatted The confidence score calculated for the formatted field.

LoA_formateed The level of assurance of the consolidated data for the formatted field.

familyName The family name of this user, or "Last Name"

CS_familyName The confidence score calculated for the familyName field.

LoA_familyName The level of assurance of the consolidated data for the familyName field.

givenName The given name of the user, or "First Name"

CS_givenName The confidence score calculated for the givenName field.

LoA_givenName The level of assurance of the consolidated data for the givenName field.

middleName The middle name(s) of the user

CS_middleName The confidence score calculated for the middleName field.

LoA_middleName The level of assurance of the consolidated data for the middleName field.

honorificPrefix The honorific prefix(es) of the user

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

46

CS_honorificPrefix The confidence score calculated for the honorificPrefix field.

LoA_honorificPrefix The level of assurance of the consolidated data for the honorificPrefix field.

honorificSuffix The honorifix suffix(es) of the user

CS_honorificSuffix The confidence score calculated for the honorificSuffix field.

LoA_honorificSuffix The level of assurance of the consolidated data for the honorificSuffix field.

updated The most recent date the details of this Person were updated (i.e., the modified
date of this entry). The value MUST be a valid Date. If this Person has never been
modified since its initial creation, the value MUST be the same as the value of
published.

verificationInfo
Describes additional information about the verification process on each record
(single or plural) of this Contact, which MAY be by the Identity Provider's service,
or MAY be by a different service (external or peer users). Consumers SHOULD
NOT assume that this data has been verified by the Identity Provider.
For more information, see Verification Info details.

moduleID
An identifier of the module who store the data in that table, in order to
differentiate if the information has been provided by the end-user, the Physical
Identity Acquisition Module or the Identity Integration Module or other

6.6 User Phones Info Table

This table contains Phone numbers of a user.

Table Column Description

identifier Unique identifier

primaryKey The primary key of this entry in database.

phoneNumber A phone number at which the person may be reached.

CS_phoneNumber The confidence score calculated for the phoneNumber field.

LoA_phoneNumber The level of assurance of the consolidated data for the phoneNumber field.

type
The type of phone, with Canonical Values home, work, other. The list of
Canonical Values could be extended in a future release.

http://opensocial.github.io/spec/2.5.1/Core-Data.xml#Date

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

47

updated

The most recent date the details of this Person were updated (i.e., the
modified date of this entry). The value MUST be a valid Date. If this Person has
never been modified since its initial creation, the value MUST be the same as
the value of published.

verificationInfo

Describes additional information about the verification process on each record
(single or plural) of this Contact, which MAY be by the Identity Provider's
service, or MAY be by a different service (external or peer users). Consumers
SHOULD NOT assume that this data has been verified by the Identity Provider.
For more information, see Verification Info details.

moduleID

An identifier of the module who store the data in that table, in order to
differentiate if the information has been provided by the end-user, the
Physical Identity Acquisition Module or the Identity Integration Module or
other

6.7 User Addresses Info Table

This table stores the components of a physical mailing address.

Table Column Description

identifier Unique identifier

primaryKey The primary key of this entry in database.

formatted The full mailing address formatted for display or use with a mailing label. This
field MAY contain newlines. This is the Primary Sub-Field for this field, for the
purposes of sorting and filtering.

CS_formatted The confidence score calculated for the formatted field.

LoA_formateed The level of assurance of the consolidated data for the formatted field.

streetAddress The full street address component, which may include house number, street
name, PO BOX, and multi-line extended street address information. This field
MAY contain newlines.

CS_streetAddress The confidence score calculated for the streetAddress field.

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

48

LoA_streetAddress The level of assurance of the consolidated data for the streetAddress field.

city The city or locality component.

CS_city The confidence score calculated for the city field.

LoA_city The level of assurance of the consolidated data for the city field.

region The state or region component.

CS_region The confidence score calculated for the region field.

LoA_region The level of assurance of the consolidated data for the region field.

postalCode The zipcode or postal code component.

CS_postalCode The confidence score calculated for the postalCode field.

LoA_postalCode The level of assurance of the consolidated data for the postalCode field.

country The country name component.

CS_country The confidence score calculated for the country field.

LoA_country The level of assurance of the consolidated data for the country field.

type The type of address, with Canonical Values home, work, other. The list of
Canonical Values could be extended in a future release.

latitude The latitude value of the address

longtitude The longtitude value of the address

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

49

updated The most recent date the details of this Person were updated (i.e. the modified
date of this entry). The value MUST be a valid Date. If this Person has never
been modified since its initial creation, the value MUST be the same as the
value of published.

verificationInfo
Describes additional information about the verification process on each record
(single or plural) of this Contact, which MAY be by the Identity Provider's service,
or MAY be by a different service (external or peer users). Consumers SHOULD
NOT assume that this data has been verified by the Identity Provider.

For more information, see VerificationInfo details.

moduleID An identifier of the module who store the data in that table, in order to
differentiate if the information has been provided by the end-user, the Physical
Identity Acquisition Module or the Identity Integration and Normalization
Module or other.

6.8 MediaItem Table

This table stores information about the media items (video, image, sound) of the user.

Table Column Description

identifier Unique identifier

primaryKey The primary key of this entry in database.

documentCategor
y

Denotes the type of the physical document that the photo is, for example
identity means that it is a photo related the identity card of the user. The valid
categories are passport, identity, negative, driving_license, utility_bill,
profession_certificate.

documentCategor
yMediaType

Denotes the type of the picture: whole, redacted, name_surname,
document_number, nationality, photo_in_document, date_of_birth,
machine_readable_zone, face_photo, right_side_photo, left_side_photo,
holding_id_document, profession, issued_date, address, other.

url Location corresponding to this media item.

http://opensocial.github.io/spec/2.5.1/Core-Data.xml#Date

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

50

title The title of the media item. This information is supplied by the user.

description Description of the content of the media item. This information is supplied by the
user.

thumbnailUrl URL to a thumbnail cover of the media item.

mediaMimeType String identifying the mime-types of media item in the media item.

updated The most recent date the details of this Person were updated (i.e., the modified
date of this entry). The value MUST be a valid Date. If this Person has never been
modified since its initial creation, the value MUST be the same as the value of
published.

verificationInfo
Describes additional information about the verification process on each record.
For more information, see Verification Info details.

6.9 Verification Table

Describes additional information about the verification process on each record of the table.

Table Column Description

identifier Unique identifier

primaryKey The primary key of this entry in database.

status The status of the verification process. Identity Provider SHOULD support at least the
following values: initiated, onProcess, verified.

startDate The date this verification process has been initiated for the last time. The verification
process could be a repeated one (periodically or by request). This information refers
to the last time that this process has been initiated. This value SHOULD be a valid
xs:date if possible, but MAY be an unformatted string, since it is recognized that this
field is often presented as free-text.

endDate The date this verification process has been initiated for the last time. The verification
process could be a repeated one (periodically or by request). This information refers
to the last time that this process has been initiated. This value SHOULD be a valid

http://opensocial.github.io/spec/2.5.1/Core-Data.xml#Date

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

51

xs:date if possible, but MAY be an unformatted string, since it is recognized that this
field is often presented as free-text.

verifiedBy The name of the verification agent (e.g., company, user, Identity Provider or other
organization). This field MUST have a non-empty value for each value returned.

description A textual description of the verification process. This field MAY contain newlines.

6.10 Audits Info Table

Table Column Description

identifier Unique identifier

primaryKey The primary key of this entry in database.

url This is a random alphanumeric generated when the audit is assigned and
will be used for implementation purposes. It MUST be unique for each
entry in this table.

verifier_id The identifier of the user who performs the peer-to-peer audit (verifier).

audited_id The identifier of the user that is being verified

auditType The type of the audit. This field can take integer values each one
indicating a different type of audit.

document_type The type of the identity document that the peer-to-peer audits
corresponds.

status The status result of the audit. The value of this field can take any of the
following values: 'assigned', 'positive', 'negative', and 'undetermined'.

comment The comment that the verifier can leave while performing the peer-to-
peer audit.

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

52

name_check The result of the peer-to-peer audit for the name attribute of the user.
IT can be NULL, True or False.

surname_check The result of the peer-to-peer audit for the surname attribute of the
user. IT can be NULL, True or False.

nationality_check The result of the peer-to-peer audit for the nationality attribute of the
user. IT can be NULL, True or False.

document_number_check The result of the peer-to-peer audit for the document number attribute
of the user. IT can be NULL, True or False.

profession_check The result of the peer-to-peer audit for the profession attribute of the
user. IT can be NULL, True or False.

birthdate_check The result of the peer-to-peer audit for the date of birth attribute of the
user. IT can be NULL, True or False.

notifyResult Denotes whether the user should be notified about the result of the
specific peer-to-peer verification. True if the user should be notified,
False if the user has already been notified.

dateAssigned The datetime that the audit has been assigned to the auditor.

6.11 Cryptographic Credentials Table

Table Column Description

identifier Unique identifier

primaryKey The primary key of this entry in database.

cryptoCredential The issued cryptographic credential.

issueDatetime
The date and time that the cryptographic credential has been issued. This
information is filled automatically when the credentials is stored.

expirationDatetime
The date and time that the cryptographic credential will be expired. This
information is provided by the user, but it can be filled as NULL as soon as the
user doesn’t specify it.

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

53

Description
The description of the cryptographic credential. This information describes the
identity attributes used to issue this cryptographic credential.

included_attributes The attributes included in the credential

id_provider
A foreign key from table “Providers”, to indicate which Id Provider provides
the source financial data

6.12 Service Providers Users Table

Table Column Description

Identifier The foreign key to the User Account identifier.

primaryKey The primary key of this entry in database.

account_address The URL of the 3rd party account

account_username User’s account name in the 3rd party service. User’s real name could be “John
Doe”, but on Facebook he would login as “joedeen”. A user MAY have more
account usernames, which would result in separate rows in the table.

approved A Boolean indicates if the IDC has confirmed the validity of the Service Provider.

description The description to the user account at this service provider (e.g.: e-banking
account, shopping account)

riskLevel The risk level of the account, can be: Low, Medium or High.

6.13 Identity Providers Users Table

Table Column Description

Identifier The foreign key to the User Account identifier.

primaryKey The primary key of this entry in database.

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

54

providerID The foreign key to the Service Provider entry.

riskLevel The risk level of the account, can be: Low, Medium or High.

6.14 Identity Providers Metadata Table

Table Column Description

primaryKey The primary key of this entry in database.

providerID Unique identifier for the Identity Provider. Each Provider returned MUST
include a non-empty id value. This identifier MUST be unique across this user's
entire set of Contacts, but MAY not be unique across multiple users' data. It
MUST be a stable ID that does not change when the same contact is returned
in subsequent requests.

providerName The name of the Provider ID

description The description of the provider

levelAssurance The level of assurance of the given Identity Provider

supportedAttributes List all the attributes that the Identity Provider supports.

endpoints List the endpoints that the Identity Provider provides.

6.15 User Physical Identity Documents Cropped Regions Table

Table Column Description

Identifier The primary key of the user in the database.

primaryKey The primary key of this entry in database.

xAxis The start points of the cropped document at x axis.

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

55

yAxis The start points of the cropped document at y axis.

width The width of the cropped document.

height The height of the cropped document.

6.16 User Relationships Info Table

This table stores the relations between users in the system. When the type of the relationship is set to
audit the relation between the two users is in terms of peer-to-peer audits. Each time a crowdsourced
audit for a user is assigned to another user in the system a relationship is stored between the two users
so that in the future the selected auditor will not be assigned an audit for the same user.

Table Column Description

primaryKey The primary key of this entry in database.

Identifier1 The identifier of the user 1, related with user 2.

Identifier2 The identifier of the user 2, related with user 1.

relationshipType The type of the relationship between the two users: 'audited', 'friendship',
'following', 'transaction'.

7 Identity Attributes Storage REST API

This section provides the description of the Identity Attributes Storage REST API. This API defines a
language- and platform-neutral protocol for Consumers to request, store and modify information of a
user identity profile in the Identity Attributes Storage of the IDC. This information contains identity
attributes of the user and proofs of account ownership as well as other personal information that are
available in the Identity Attributes Storage.

Extending ReCRED. As with some other modules described in this deliverable, the implementation of the
Identity Attributes Storage REST API was initiated in the ReCRED project and reported in Deliverable 12 of
ReCRED. However, since in INCOGNITO we have different/additional requirements and we have created
a different database schema (see Section 6), there was a need to re-implement this API. Hence, in the
context of task T4.1 of INCOGNITO, we have re-factored the codebase of this REST API so that it uses the
INCOGNITO database schema (Identity Attributes Storage), while also working across improving the
maintainability, performance, deployability and scalability of the API. More specifically, we have
performed several performance optimizations including the caching information wherever this is feasible

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

56

so that the API respond faster to certain API calls that mostly utilized by the clients of this API. We have
deployed the Identity Attributes Storage REST API as a docker container that can be easily scaled to
multiple instances of the API based on the demand. Last, we have made the required modifications so
that the codebase of this API is able to incorporate future updates regarding the support for performing
operations on the INCOGNITO blockchain that will be developed in the context of task T4.2, hence acting
as a node of this blockchain for certain operations. Below we provide a detailed documentation of the
Identity Attributes Storage REST API, irrespectively of whether some of information are part of the initial
version of the API since it is important for the reader to have the complete documentation of the API in
order to understand and utilize it.

7.1 REST Services

INCOGNITO's Identity Attributes Storage REST API consist of collections of REST-accessible resources that
can be accessed and modified using the basic set of HTTP request methods (GET, PUT, PATCH, POST, and
DELETE). Such services have to be used by internal modules of the Identity Consolidator to access identity
data hosted and managed by the IDC.

In general, for all REST Services:

• HTTP GET method is used to retrieve representations of the current state of any given resource
• PUT and PATCH are used to modify the current state
• DELETE is used to delete the resource
• POST is used to either create new resources or to perform other types of operations that do not
fit within the scope of the other core HTTP methods

When a client application needs to communicate with the Identity Attributes Storage REST API via an
intermediary that restricts the use of certain standard and extension HTTP Methods (e.g., PUT, DELETE,
and PATCH), the client COULD utilize the "X-HTTP-Method-Override" HTTP Request Header mechanism in
a POST request. The "X-HTTP-Method-Override" header MUST NOT be used to send HTTP GET requests.

Responses to all requests specify an appropriate HTTP Status Code indicating the status of the response.
All REST Services share a common, basic URI Structure that MAY be extended on a case-by-case basis. This
common structure helps to ensure that all interactions remain as consistent as possible across multiple
REST Services while allowing individual service-specific and implementation specific behaviors to be
supported.

7.2 HTTP Request & Response Header Fields

INCOGNITO services MAY use the request and response headers as defined at OData specification8. In
particular, it is highly recommended to support the following header elements:

• DataServiceVersion: Clients MAY use the DataServiceVersion header on a request to specify the
version of the protocol used to generate the request.

• Content-Type: The format of an individual request or response body MUST be specified in the
Content-Type header of the request or response.

• Accept: As specified in RFC26169, the client MAY specify the set of accepted formats through the
use of the Accept Header.

8 https://www.odata.org/
9 https://tools.ietf.org/html/rfc2616

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

57

• If-Match: A client MAY include an If-Match header in a request to GET, PUT, MERGE, PATCH or
DELETE an entity or entity property, or to invoke an action bound to an entity. The value of the If-
Match request header MUST be an ETag value previously retrieved for the entity. If specified, the
request MUST only be invoked if the specified value matches the current ETag value of the entity.
If the value does not match the current ETag value of the entity for a Data Modification or Action
request, the service MUST respond with ‘412 Precondition Failed’ and MUST ensure that no data
is modified as a result of the request.

• ETag: A request that returns an individual entity MAY include an ETag header. The value specified
in the ETag header may be specified in the If-Match (or If-None-Match) header of a subsequent
Data Modification or Action request in order to apply optimistic concurrency in updating, deleting,
or invoking the action bound to, the entity.

7.3 Request Operations

An INCOGNITO service MUST support Create, Update, and Delete operations for all of the identity
information and elements that it exposes. A successfully completed Data Modification request must not
violate the integrity of the data. A client may request whether content be returned from a CREATE,
UPDATE, or DELETE request, or the invocation of an Action, by specifying the Prefer Header.

7.3.1 Creation of Information

To CREATE an entity in a collection, send a POST request to that collection’s URL. The POST body MUST
contain a single valid entity representation. Upon successful completion, the response MUST contain
either a Location header that contains the edit URL of the created entity, or '201 Created', or '204 No
Content' if the request included a Prefer header with a value of 'return-no-content'.

7.3.2 Conditional Requests

A client MAY include an ETag value in the if-match or if-none-match request header of a Data Modification
or Action request. If specified, the operation MUST only be invoked if the if-match or if-none-match
condition is satisfied. The ETag value specified in the if-match or if-none-match request header may be
obtained from an ETag header of a request for an individual entity or may be included for an individual
entry in a format-specific manner.

Note that the Entity Tag specified in the response is generally specific to the actual payload included in
the response. If a REST service supports multiple representation formats for a single resource, such as
offering multiple data format options or modified views of the resource tailored to the authentication
credentials included in the request, the Entity Tag can vary for each specific response, regardless of
whether the actual state of the resource on the server has changed. Therefore, for any single resource,
multiple Entity Tags can potentially represent the current state of the resource.

7.3.3 Full Vs Partial Modifications

Some UPDATE requests support two types of update: replace and merge. The client chooses which to
execute by which HTTP verb it sends in the request. The current state of a resource may be modified in
part or in full using either the PATCH or PUT HTTP methods, respectively. A PUT request indicates a
replacement update. Given a URI that represents a resource, the current state of that resource can be
modified in full by sending an HTTP PUT request to the URI. The payload of the PUT request is considered
to be a replacement for the identified resource, although the server is free to determine exactly how the
resource is to be modified.

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

58

Alternatively, the application can use a PATCH request to perform a partial modification of the resource. A
PATCH or MERGE indicates a differential update. The service MUST replace exactly those property values
that are specified in the request body. Missing properties, including dynamic properties, MUST NOT be
altered. The semantics of PATCH are defined in RFC 578910. The service MUST be compliant with that
definition. Support for the PATCH method to perform partial modifications of resource is
optional. Assuming the change is successful, the server would respond with an appropriate code status,
and MAY include the updated representation of the resource.

7.3.4 Delete Information

To DELETE an existing entity, send a DELETE request to that entity’s edit URL. The request body SHOULD
be empty. Upon successful deletion, the response MUST be '204 No Content'.

7.4 Query Invocations

All requests to the Identity Attributes Storage are made as HTTP GET operations on a URL deriving from
the specified Base URL. Consumers MAY append additional path information and/or query string
parameters to the Base URL as part of the request. Additionally, authentication information MAY be sent
via POST data or additional HTTP headers in the request. Responses are returned in the body of the HTTP
response, formatted as JSON or XML, depending on what is requested. Response and error codes SHOULD
be transmitted via the HTTP status code of the response (if possible) and SHOULD also be specified in the
body of the response. Since the API endpoint is dynamic (and does not serve static content), Consumers
MUST NOT interpret any cache headers in the response as having meaning because the same URL request
might return a different response upon subsequent invocation.

7.4.1 Authentication & Authorization

The data returned by any endpoint of the Identity Attributes Storage API, MAY contain public data, or it
MAY contain private data. If the data returned is public, no authentication or authorization is required.
However, in most of the cases the data returned are private sensitive personal identity information, hence
an authentication and authorization is required. Typically, this is done by the clients of the Identity
Attributes Storage API obtaining either Direct Authorization, Basic Authorization with a username and
password or Secured Authentication with an access token obtained out-of-band by the user and given to
the Consumer to present as part of the request.

7.4.1.1 Direct Authorization
The Identity Attributes Storage API provides support for Direct Authorization through the support of HTTP
Basic Access Authentication RFC261711, and also supports additional Direct Authorization mechanisms, if
the clients choose so.

7.4.1.2 Authorization Methods Supported
The clients that want to access private data MAY choose not to support either Direct Authorization,
depending on their security requirements, but they MUST support either OAuth or HTTP Basic
Authorization if they require any Authorization. When accessing an endpoint of the Identity Attributes
Storage API, if sufficient authorization credentials are not provided, the API returns an HTTP 401
Unauthorized response, and provides the available Authorization mechanisms available by including

10 https://tools.ietf.org/html/rfc5789
11 http://portablecontacts.net/draft-spec.html#RFC2617

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

59

WWW-Authenticate headers in the response for each type of Authorization method supported (as
defined in RFC261612). In this way, the clients will then be able to recognize that the API endpoint they
are calling is a protected resource and initiate the proper Authorization process needed to obtain the
appropriate credentials.

7.4.2 Query Parameters

The Identity Attributes Storage API defines a standard set of operations that can be used to filter, sort,
and paginate response results. The operations are specified by adding query parameter to the Base URL,
either in the query string or as HTTP POST data. In particular, we use the OData13 protocol, which is an
application-level protocol for interacting with data via RESTful interfaces. The protocol supports the
description of data models and the editing and querying of data according to those models. Specifically,
OData provides the following:

• Metadata: A machine-readable description of the data model exposed by a particular data
provider.
http://consolidator-incognito.socialcomputing.eu/INCOGNITO/StorageAPI/open/$metadata

• Data: Sets of data entities and the relationships between them.

• Querying: Requesting that the service performs a set of filtering and other transformations to its
data, then returns the results.

• Editing: Creating, updating, and deleting data.

• Operations: Invoking custom logic

• Vocabularies: Attaching custom semantics

The path of the URL specifies the target of the request. Additional query operators, such as filter, sort,
page, and projection operations are specified through query options.

7.4.3 Data Filtering

Filtering is used to limit the request results to data that match a set of given criteria. The $filter system
query option restricts the set of items returned. INCOGNITO uses OData protocol and therefore the
following operations and query filters shown in the two tables below are supported.

Operator Description Example

Logical Operators

Eq Equal /User_Accounts?$filter=Identifier eq 1

Ne Not equal /User_Accounts?$filter=Identifier ne 1

Gt Greater than /User_Accounts?$filter=Identifier gt 10

Ge Greater than or equal /User_Accounts?$filter=Identifier ge 10

Lt Less than /User_Accounts?$filter=Identifier lt 10

12 http://portablecontacts.net/draft-spec.html#RFC2616
13 http://www.odata.org/

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

60

Le Less than or equal /User_Accounts?$filter=Identifier le 10

And Logical and
/User_Accounts?$filter=Identifier le 10 and
Identifier gt 3

Or Logical or
/User_Accounts?$filter=Identifier le 3 and
Identifier gt 10

Not Logical negation /User_Accounts?$filter=not endswith(Email,'com')

Function Example

String Functions

bool substringof(string po, string p1) /User_Accounts?$filter=substringof('hills', Email) eq true

bool endswith(string p0, string p1) /User_Accounts?$filter=endswith(Email,'com') eq true

bool startswith(string p0, string p1) /User_Accounts?$filter= startswith(Email, 'hills') eq true

string tolower(string p0) /User_Accounts?$filter=tolower(DisplayName) eq ‘louisa’

7.4.3.1 Sorting of Results
Sorting allows requests to specify the order in which data records are returned. The $orderby System
Query option specifies the order in which items are returned from the service. The value of
the $orderby System Query option contains a comma-separated list of expressions whose primitive result
values are used to sort the items. A special case of such an expression is a property path terminating on a
primitive property. A type cast using the qualified entity type name is required to order by a property
defined on a derived type. The expression can include the suffix ASC for ascending or desc for descending,
separated from the property name by one or more spaces. If ASC or DESC is not specified, the service
MUST order by the specified property in ascending order. Items are sorted by the result values of the first
expression, and then items with the same value for the first expression are sorted by the result value of
the second expression, and so on.

7.4.3.2 Presentation of Results
Presentation controls the format, makeup, and delivery mechanism for returning the requested result set.
The $select system query option requests that the service return only the properties, dynamic
properties, actions and functions explicitly requested by the client. The service returns the specified
content, if available, along with any available expanded navigation properties, and MAY return additional
information. The value of the $select query option is a comma-separated list of properties, qualified
action names, qualified function names, the star operator (*), or the star operator prefixed with the
namespace or alias of the schema in order to specify all operations defined in the schema. If
the $select query option is not specified, the service returns the full set of properties or a default set of
properties. The default set of properties MUST include all key properties. If the service returns less than

http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.html#_System_Query_Option_6

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

61

the full set of properties, either because the client specified a select or because the service returned a
subset of properties in the absence of a select, the context URL MUST reflect the set of selected properties
and expanded navigation properties.

The $format system query option specifies the media type of the response. The $format query option, if
present in a request, MUST take precedence over the value(s) specified in the Accept request header. The
value of the $format query option is a valid internet media type, optionally including parameters.

7.5 Response Format

The structure of the response object returned from a successful request MUST follows
the OData specification. OData defines semantics around the following request and response headers.
Additional headers may be specified, but have no unique semantics defined in OData. In addition, the
data are returned in both XML and JSON formats.

7.6 Error Codes

The Identity Attributes Storage API MUST returns a response code with every response. Response codes
are numeric and conform to existing HTTP response codes where possible, as defined in OData. In addition
to the response code, the API SHOULD also provide a human-readable reason that explains the reason for
the response code. This message SHOULD be intelligible to developers, but MAY be unsuitable for display
to end-users. The clients are responsible to provide their own appropriate error message to users when
encountering an error response.

7.7 Structure

Each field is defined as either a Singular Field, in which case there MUST NOT be more than one instance
of that field per contact, or as a Plural Field, in which case any number of instances of that field MAY be
present per user profile. Identity information is formatted using labeled attributes with either structured
or unstructured string data. Each attribute value consists of one of the following types:

• Simple: A single string attribute which MAY specify a REQUIRED data format or allow any string.
A simple field MAY contain Canonical Values specified, in which case Identity Providers SHOULD
try to conform to those values if appropriate, but MAY provide alternate string values to represent
additional values.

• Boolean: A special case of a Simple Field with two legal values: true and false. Values are case-
sensitive.

• Complex: A multi-value attribute that contains any combination of other attributes. Complex
attributes are defined by listing the child attributes and their types. For most Complex Fields, the
value sub-field contains the Major Value of that field (i.e., the primary piece of contact
information described by that field), and the other fields provide additional meta-data.

7.7.1 Singular Fields

Some examples of singular fields are the following:
• id: Unique identifier for the table record in the database
• displayName: The name of the user, suitable for display to end-users. Each Contact returned

MUST include a non-empty displayName value. The name SHOULD be the full name of the Contact
being described if known (e.g., John Doe), but MAY be a username or handle, if that is all that is

http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1-protocol/odata-v4.0-errata02-os-part1-protocol-complete.html#_Metadata_URL

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

62

available. The value provided SHOULD be the primary textual label by which this Contact is
normally displayed by the Identity Provider when presenting it to end-users.

• updated: The most recent date the details of this Contact were updated (i.e. the modified date of
this entry). The value MUST be a valid xd:dateTime (e.g. 2008-01-23T04:56:22Z). If this Contact
has never been modified since its initial creation, the value MUST be the same as the value of
published. Note the updatedSince Query Parameter can be used to select only contacts whose
updated value is equal to or more recent than a given xs:dateTime. This enables Consumers to
repeatedly access a user's data and only request newly added or updated contacts since the last
access time.

• birthdate: The date of birth of the user. The value MUST be a valid xs:date (e.g. 1975-02-14. The
year value MAY be set to 0000 when the age of the Contact is private, or the year is not available.

• gender: The gender of the user. Identity Providers SHOULD return one of the following Canonical
Values, if appropriate: male, female, or undisclosed, and MAY return a different value if it is not
covered by one of these Canonical Values.

7.7.2 Plural Fields

Within this specification, a "plural-field" is a property whose value consists of zero or more alternative
choices represented as individual elements (phones, emails, etc.). Unless specified otherwise, all Plural
Fields have the same three standard sub-fields:

• value: The primary value of this field, e.g., the actual e-mail address, phone number, or URL.
When specifying a sortBy field in the Query Parameters for a Plural Field, the default meaning is
to sort based on this value sub-field. Each non-empty Plural Field value MUST contain at least the
value sub-field, but all other sub-fields are optional.

• type: The type of field for this instance, usually used to label the preferred function of the given
contact information. Unless otherwise specified, this string value specifies Canonical Values of
work, home, and other.

• primary: A Boolean value indicating whether this instance of the Plural Field is the primary or
preferred value of for this field, e.g., the preferred mailing address or primary e-mail address.
Identity Providers MUST NOT mark more than one instance of the same Plural Field as
primary="true", and MAY choose not to mark any fields as primary, if this information is not
available. For efficiency, Identity Providers SHOULD NOT mark all non-primary fields with
primary="false” but should instead omit this sub-field for all non-primary instances.

When returning Plural Fields, the Identity Attributes Storage API SHOULD canonicalize the returned value,
if this is appropriate (e.g., e-mail addresses and URLs). The API MAY also return the same value more than
once with different types (e.g., the same e-mail address may used for work and home), but SHOULD NOT
return the same (type, value) combination more than once per Plural Field, as this complicates processing
by the Consumer. Some examples of such plural fields are:

• emails: E-mail address for this Contact. The value SHOULD be canonicalized by the Identity
Provider, e.g., john.doe@example.com instead of JDOE@EXAMPLE.COM.

• urls: URL of a web page relating to this Contact. The value SHOULD be canonicalized by the API.
In addition to the standard Canonical Values for type, this field also defines the additional
Canonical Values blog and profile.

• phoneNumbers: Phone number for the user. No canonical value is assumed here. In addition to
the standard Canonical Values for type, this field also defines the additional Canonical Values
mobile, fax, and pager.

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

63

• addresses: A physical mailing address for the user.
• accounts: An online account held by the user.

7.7.3 Name Element

The components of a user's real name. The API MAY return just the full name as a single string in the
formatted sub-field, or they MAY return just the individual component fields using the other sub-fields,
or they MAY return both. If both variants are returned, they SHOULD be describing the same name, with
the formatted name indicating how the component fields should be combined. The following attributes
are included in the Name element:

• formatted: The full name, including all middle names, titles, and suffixes as appropriate,
formatted for display (e.g., Mr. John Doe). This is the Primary Sub-Field for this field, for the
purposes of sorting and filtering.

• familyName: The family name of the user.
• givenName: The given name of the User, or "First Name".
• middleName: The middle name(s) of the user or the "Father's Name".
• honorificPrefix: The honorific prefix(es) of the user, or "Title".
• honorificSuffix: The honorifix suffix(es) of the user, or "Suffix".
• updated: The most recent date the details of this Person were updated (i.e., the modified date of

this entry). The value MUST be a valid Date. If this Person has never been modified since its initial
creation, the value MUST be the same as the value of published.

7.7.4 address Element

The components of a physical mailing address. The Identity Attributes Storage API MAY return just the full
address as a single string in the formatted sub-field, or they MAY return just the individual component
fields using the other sub-fields, or they MAY return both. If both variants are returned, they SHOULD be
describing the same address, with the formatted address indicating how the component fields should be
combined. The following attributes are included in the address element:

• formatted: The full mailing address, formatted for display or use with a mailing label. This field
MAY contain newlines. This is the Primary Sub-Field for this field, for the purposes of sorting
and filtering.

• streetAddress: The full street address component, which may include house number, street
name, PO BOX, and multi-line extended street address information. This field MAY contain
newlines.

• city: The city or locality component.
• region: The state or region component.
• postalCode: The zipcode or postal code component.
• country: The country name component.
• updated: The most recent date the details of this Person were updated (i.e. the modified date

of this entry). The value MUST be a valid Date. If this Person has never been modified since its
initial creation, the value MUST be the same as the value of published.

7.7.5 account Element

Describes an online identity/account held by a user, which MAY be another Identity Provider or a Service
Provider. The clients SHOULD NOT assume that this account has been verified by INCOGNITO to actually
belong to the user. For each account, the domain is the top-most authoritative domain for this
account, e.g., www.amazon.com or www.google.com, and MUST be non-empty. Each account must also

http://opensocial.github.io/spec/2.5.1/Core-Data.xml#Date

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

64

contain a non-empty value for either username or user_id, and MAY contain both, in which case the two
values MUST be for the same account. These accounts can be used to determine if a user on one service
is also known to be the same person on a different service, to facilitate connecting to people the user
already knows on different services. The account element contains the following attributes:

• domain: The top-most authoritative domain for this account, e.g., "amazon.com". This is the
Primary Sub-Field for this field, for the purposes of sorting and filtering.

• username: An alphanumeric user nickname, usually chosen by the user, e.g., "test1245".
• userid: A user ID number, usually chosen automatically, and usually numeric but sometimes

alphanumeric.
• updated: The most recent date the details of this Person were updated (i.e., the modified date of

this entry). The value MUST be a valid Date. If this Person has never been modified since its initial
creation, the value MUST be the same as the value of published.

• Trusted: Boolean reflecting whether the user trusts the Identity Consolidator to store the actual
data.

7.7.6 verificationInfo Element

Describes additional information about the verification status on each identity attribute (single or plural)
of a user, which MAY be by the IDC, or MAY be by a different service (external or peer users). Consumers
SHOULD NOT assume that this data has been verified by the Identity Provider. The verificationInfo
element includes the following attributes:

• status: The status of the verification process. Identity Provider SHOULD support at leat the
following values: initiated, onProcess, verified.

• startDate: The date this verification process has been initiated for the last time. The verification
process could be a repeated one (periodically or by request). This information refers to the last
time that this process has been initiated. This value SHOULD be a valid xs:date if possible, but
MAY be an unformatted string, since it is recognized that this field is often presented as free-
text.

• endDate: The date this verification process has been completed for the last time. The verification
process could be a repeated one (periodically or by request). This information refers to the last
time that this process has been completed. This value SHOULD be a valid xs:date if possible, but
MAY be an unformatted string, since it is recognized that this field is often presented as free-
text.

• verifiedBy: The name of the verification agent (e.g., company, user, Identity Provider or other
organization). This field MUST have a non-empty value for each value returned.

• description: A textual description of the verification process. This field MAY contain newlines.

7.7.7 Other Elements

We note that similar elements exist for all the respective tables of the Identity Attributes Storage (see
Section 6). Although in this section we omit some of them for brevity, information from any table in the
database can be retrieved in the same exact way as documented above and each returned element will
include most of the attributes of that database table in JSON format.

http://opensocial.github.io/spec/2.5.1/Core-Data.xml#Date

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

65

8 Identity Consolidator (IDC) 3rd Party REST API

The Identity Consolidator 3rd Party REST API that the Identity Consolidator platform exposes is used by
external from the IDC entities (e.g., Service Providers, Identity Providers, etc.) for communication
purposes with the IDC. In general, the IDC 3rd Party REST API is used by any INCOGNITO component or
online service who wants to interact with the Identity Consolidator platform.

Extending ReCRED. We note that the role of the 3rd Party REST API and its name is influenced by the
identical REST API reported in Deliverable 12 of the ReCRED project. However, in the context of task T4.1
of INCOGNITO we have implemented this API from scratch using the Node.js Express.js framework14,
which is a framework for implementing fast and scalable REST APIs. Leveraging the latest advancements
in virtualization techniques, we have also deployed this REST API as a Docker container and it is configured
so that multiple instances can be deployed in case this is needed. The current version of the 3rd Party API
supports two operations which we describe below, and we plan to implement additional operations based
on the future requirements of tasks T4.2 and T4.3, as well as the requirements of WP3 (e.g., adding
operations for the creation and backup of Idemix cryptographic credentials) and WP5.

8.1 High-Level Operations

The high-level operations that the current version of the IDC 3rd Party REST API supports can be classifier
to the following categories:

1. Service Providers REST Operations

a. Transfer trust between Service Providers

2. User Account Management

a. Delete User IDC account

We note, that as the implementation of the INCOGNITO framework and the IDC platform progresses, we
will continuously update the IDC 3rd Party REST API with additional endpoints based on the required
functionality that is needed to be implemented. Hence, an updated version of the IDC 3rd Party REST API
with additional endpoints will be provided in deliverable D4.2.

8.2 Transfer Trust Between Service Providers

Description: This REST operation is used to transfer trust among Service Providers. For example, it can be
used to transfer trust from eBay to Amazon.
Operation: POST

Request:
POST /api/v1/transfer_trust/
Accept: application/json

Request Body:
{

"user_id":721,
"source_domain":"test1.com",
"destination_domain":"test2.com"

}

14 https://expressjs.com/

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

66

Response:
200
Content-Type: application/json

{

"user_id":721,
"source_domain":"test1.com",
"destination_domain":"test2.com",
"attribute_description":"trust",
"trust_value":"37",
"transfer_datetime":"02/02/17 15:38"

}

Description of Elements in Request Body:

Element Description Valid Value

user_id User’s unique Identifier Integer

source_domain
The domain that is the holder of the trust value that
we want to transfer

URL

destination_domain The domain that will receive the trust value URL

Description of Elements in Response Body

Element Description Required Valid Value

user_id User’s unique Identifier Yes Integer

source_domain
The domain that is the holder of the
trust value that we want to transfer

Yes
URL

destination_domain
The domain that will receive the trust
value

Yes
URL

attribute_description
The type of the identity attribute that
we transfer. In this case this should be
set to "trust"

Yes
"trust"

trust_value
The value of the trust of the user in the
source domain

Yes
String

transfer_datetime
The date and time that the trust
transferred.

Yes
DATETIME

8.3 Delete User Identity Consolidator Account

Description: Using this REST API call the user is able to request the deletion of his INCOGNITO account
and all its stored information and credential using his/her mobile device.
Operation: POST
Request:

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

67

POST /api/v1/delete_account/
Accept: application/json

Request Body:

{
 "email_address": "incognitouser@gmail.com",
}

Response:

200
Content-Type: application/json

{
 "result": "SUCCESS"
}
Description of Elements in Request Body:

Element Description Valid Value

email_address
The email address of the user who wants to delete his
INCOGNITO account

Email Address

Description of Elements in Response Body

Element Description Required Valid Value

result The result of the account deletion Yes
String (SUCCESS or
FAILED)

9 Conclusion

The Identity Acquisition and Integration platform and the IDC platform in general, are the main
components of the INCOGNITO architecture. These components and their corresponding implemented
Web and mobile applications play a vital role in both the "Bot-or-not/Fake News Dissemination" and the
"Online Media Content Sharing" use cases of the INCOGNITO platform. The purpose of this deliverable,
"Identity Acquisition and Integration Platform", was to describe the design and implementation of the
Identity Acquisition and Integration platform and the IDC in general since the Identity Acquisition platform
is part of the IDC. More precisely, in this deliverable we provided a detailed description of the
implementation of the full identity acquisition Web and mobile application, which enable the acquisition
and seamless integration of the multiple soft proofs of identities of a user, both the real-world identities
(e.g., national ID cards, utility bills, ePassports, eID cards, university degree certificate, etc.), as well as all
the online accounts of the user.

Furthermore, this deliverable also provides a description of the schema of the Identity Attributes Storage
that is responsible to store and secure the collected identity information of the users as well as to hold
other information that are required by several functionalities of the Identity Acquisition and Integration

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

68

platform. In addition, we provide the description of the Identity Attributes Storage REST API, which allows
all the modules of the IDC to interact with the users' identity information stored in the Identity Attributes
Storage. Last, we also provide a description of the IDC 3rd Party REST API, which allows all the external
entities of INCOGNITO to interact with the IDC.

We note that, the developed solutions and the research activities performed in the context of this
deliverable fully tackle the objectives of Task 4.1. The developed Identity Acquisition and Integration
platform, as well as the Identity Consolidator, which both developed in the context of this deliverable are
considered as some of the key achievements of the project outcomes as they enable the acquisition,
verification, integration, and normalization of the multiple soft proofs of identities of the user. At the same
time, the work and research activities described in this document will be the basis for the implementation
of Task 4.2 and Task 4.3. More precisely, through our continuous research activities we will build upon
the modules described in this deliverable in order to tackle the objectives of Task 4.2 and implement a
decentralized identity management platform leveraging the blockchain technology. This work will be
documented in D4.2. In addition, the Identity Consolidator will be enhanced with a user-friendly consent
management platform as part of the work of Task 4.3 and this will be part of the research activities that
will be described in the deliverable D4.3.

Last, we believe that the achieved outcomes of Task 4.1 and solutions developed in the context of this
task provide to the user the notion of document-to-service authentication as it allows them to
consolidator all their multiple soft proofs of identities (both physical and online) under a single platform
and later use their INCOGNITO account and verified identity to securely authenticate and access various
Service Providers by just providing their verified identity attributes without the need to maintain and
provide a username or a password.

Finally, we note that the reported scientific outcomes have also been disseminated to the scientific

community in the following project publication: "Killing the Password and Preserving

Privacy With Device-Centric and Attribute-Based Authentication" [20]. In addition, the key

achievements and the reported scientific outcomes of this deliverable have also been disseminated

to the scientific community and the general public in the following talks of the project's

coordinator:

• 6th Meeting of the European Security and Defense College. Brussels. November 22, 2019

• Mastering Enterprise Management and INCOGNITO. Piraeus. November 24, 2019

• Critical Infrastructure Security and Resilience (CISaR) Workshop. Norway. January 30-

31, 2020

• Secure Internet Day 2020, IoT: Challenges & Risks. Cyprus. February 11, 2020

• 7th Information Security Conference. Athens. February 19, 2020

• European Association of Biometrics Conference 2020 (EAB-RPC 2020). Virtual Event.

September 16, 2020

For more information about the project's outcomes and dissemination activities, please visit our

project's website15.

15 https://incognito.socialcomputing.eu/news-events/

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

69

10 References

[1] "OpenID Connect," 2020. [Online]. Available: https://openid.net/connect/.

[2] I. E. T. F. (IETF), "RF 6749 - The OAuth 2.0 Authorization Framework," [Online].

Available: https://tools.ietf.org/html/rfc6749.

[3] T. P. Group, "PHP: Hypertext Processor," 2020. [Online]. Available: https://www.php.net/.

[4] A. S. Foundation, "Apache HTTP Server Project," 2020. [Online]. Available:

https://httpd.apache.org/.

[5] T. Otwell, "Laravel PHP Framework," 2020. [Online]. Available: https://laravel.com/.

[6] Z. Říha, "An Overview of Electronic Passport Security Features," IFIP Summer School on

the Future of Identity in the Information Society, pp. 151-159, 2008.

[7] G. Developers, "Google Maps JavaScript API," 2020. [Online]. Available:

https://developers.google.com/maps/documentation/javascript/overview.

[8] P. b. D. Foundation, "IRMA. Put a digital passport on your own mobile," 2020. [Online].

Available: https://www.irmacard.org/.

[9] Wikipedia, "Basic Access Control," 2020. [Online]. Available:

https://en.wikipedia.org/wiki/Basic_access_control.

[10] J. Team, "JMRTD Project," 2020. [Online]. Available: https://jmrtd.org/about.shtml.

[11] I. C. A. Organization, "International Civil Aviation Organization (ICAO)," [Online].

Available: https://www.icao.int/Pages/default.aspx.

[12] G. Developers, "WebRTC - Real-time communication for the Web," 2020. [Online].

Available: https://webrtc.org/.

[13] P. Team, "PeerJS - Simple Peer-to-Peer with WebRTC," 2020. [Online]. Available:

https://peerjs.com/.

[14] A. S. R. A. P. B. a. t. S. F. T. Josh Lockhart, "Slim - A Microframework for PHP," 2020.

[Online]. Available: https://www.slimframework.com/.

[15] I. E. T. F. (IETF), "The OAuth 2.0 Authorization Framework," 2012. [Online]. Available:

https://tools.ietf.org/html/rfc6749.

[16] S. F. Conservancy, "SeleniumHQ Browser Automation," 2020. [Online]. Available:

https://www.selenium.dev/.

[17] M. Foundation, "MariaDB," [Online]. Available: https://mariadb.org/about/.

[18] P. Contacts, "Portable Contacts Schema Definition," 2020. [Online]. Available:

http://portablecontacts.net/draft-spec.html#schema.

[19] Wikipedia, "OpenSocial Specification," 2020. [Online]. Available:

https://en.wikipedia.org/wiki/OpenSocial.

[20] S. Z. B. C. S. T. G. G. A. C. A. R. C. P. G. B. S. G. C. X. M. S. Kostantinos Papadamou,

"Killing the Password and Preserving Privacy with Device-Centric and Attribute-based

Authentication," IEEE Transactions on Information Forensics and Security, vol. 15, pp.

2183-2193, 2020.

 Deliverable D4.1 “Identity Acquisition and Integration Platform”

70

[21] I. Square, "Near-Field Communication (NFC)," 2017. [Online]. Available:

http://nearfieldcommunication.org/.

[22] OData, "OData v2.0 – The Protocol for REST APIs," 2020. [Online]. Available:

https://www.odata.org/documentation/odata-version-2-0/uri-conventions/.

