

INCOGNITO is funded by the European Commission”s Horizon 2020 Research and Innovation

Framework program under the Marie Skłodowska-Curie Research and Innovation Staff Exchanges

Action, Grant Agreement no 824015. The content of this deliverable reflects only the views of the

project owner. The European Agency / Commision is not responsible for any use that may be made

of the information it contains.
PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the INCOGNITO Consortium. Neither this document nor the

information contained herein shall be used, duplicated or communicated by any means to any third party, in whole or in parts,

except with prior written consent of the INCOGNITO consortium.

IdeNtity verifiCatiOn with privacy-preservinG credeNtIals for

anonymous access To Online services

WP2 – Requirements, Architecture and Ethics

Deliverable D2.3 “Reference architecture”

Marie Sklodowska Curie,

Research and Innovation Staff

Exchange (RISE)

Editor(s): CUT

Author(s): Kostantinos Papadamou (CUT– outside secondment),

Markos Charalambous (CUT– outside secondment),

Petros Papagiannis (CUT secondee), Michael Sirivianos

(CUT– outside secondment), Christos Xenakis (UPRC–

outside secondment), Vaios Bolgouras (UPRC secondee),

Anastasia Tsiota (UPRC secondee), Dimitrianos Savva

(LSTech secondee), Evangelos Kotsifakos (LSTech –

outside secondment), George Gugulea (CSGN– outside

secondment), Sorin Catalin Teican (CSGN– outside

secondment), Petru Scurtu (CSGN– outside secondment),

Ioana Stroinea (CSGN secondee), Katerina Samari (FOGUS

secondee), Carlos Segura (TID– outside secondment)

Dissemination Level: Public

Nature: Report

Version: 2.0

 Deliverable D2.3 “Reference Architecture”

2

Project Profile

Contract Number 824015

Acronym INCOGNITO

Title IdeNtity verifiCatiOn with privacy-preservinG credeNtIals for anonymous access

To Online services

Start Date Jan 1st, 2019

Duration 48 Months

Partners

TECHNOLOGIKO PANEPISTIMIO

KYPROU (BEN2)
CUT Cyprus

UNIVERSITY OF PIRAEUS

RESEARCH CENTER (BEN1)
UPRC

Greece

CERTSIGN SA (BEN3) CSGN Romania

TELEFONICA INVESTIGACION Y

DESARROLO SA (BEN6)
TID Spain

LSTECH ESPANA SL (BEN4)

LST Spain

FOGUS INNOVATIONS &

SERVICES P.C. (BEN7)
FOG Greece

Document History

VERSIONS

Version Date Author Remarks

0.1
03/03/2020

(M15)

Kostantinos Papadamou (CUT),

Markos Charalambous (CUT)

Executive Summary and Table of

Contents

0.2
04/03/2020

(M15)

Kostantinos Papadamou (CUT),

Markos Charalambous (CUT),

Vaios Bolgouras (UPRC)

Introduction

0.3

09/03/2020-

31/03/2020

(M15)

Markos Charalambous (CUT),

Petros Papagiannis (CUT),

Dimitrianos Savva (LST),

Vaios Bolgouras (UPRC),

Ioana Stroinea (CSGN),

George Gugulea (CSGN),

Vaios Bolgouras (UPRC)

Architecture Building Blocks

0.4

02/04/2020-

30/04/2020

(M16)

Kostantinos Papadamou (CUT),

Markos Charalambous (CUT),

Petros Papagiannis (CUT),

Ioana Stroinea (CSGN),

Protocols and Technologies

 Deliverable D2.3 “Reference Architecture”

3

Sorin Catalin Teican (CSGN),

Petru Scurtu (CSGN),

Vaios Bolgouras (UPRC)

0.5

04/05/2020-

05/06/2020

(M17-M18)

Kostantinos Papadamou (CUT),

Markos Charalambous (CUT),

Petros Papagiannis (CUT),

Katerina Samari (FOGUS),

Carlos Segura (TID),

Ioana Stroinea (CSGN),

Petru Scurtu (CSGN),

Vaios Bolgouras (UPRC)

Architectural Components

0.6

08/06/2020-

29/06/2020

(M18)

Michael Sirivianos (CUT),

Christos Xenakis (UPRC),

Evangelos Kotsifakos (LST)

Document Review

1.0 30/06/2020 Nikos Passas (UPRC) Submission

2.0 31/12/2020 Nikos Passas (UPRC) Submission of revised version

Deliverable dates

Delivery Date

Contract delivery due date 30/06/2020 (M18)

Actual delivery date of version n.1 30/06/2020 (M18)

Actual delivery date of version n.2 31/12/2020 (M24)

Fellow ID Name/Surname
Researcher

category
Declaration No. PM

1 Dimitrianos Savva ESR 1 3

5 Petros Papagiannis ESR 4 3

10 Katerina Samari ER 8 3

11 Ioana Stroinea ESR 9 3

16 Vaios Bolgouras ESR 13 4

15 Anastasia Tsiota ESR 12 0.25

 Deliverable D2.3 “Reference Architecture”

4

Executive Summary

The current deliverable documents the reference architecture of the INCOGNITO project and

is part of the Work Package 2. The development of the project is taking place under a

partnership that involves both academic and industrial expertise. Considering the

interdisciplinary knowledge exchange, the consortium involved in INCOGNITO aims to create

a platform that leverages the state-of-the-art technologies so that users may securely, privately

and effortlessly access online services, as well as to add features that guide users through the

registration and authentication processes without disclosing their identity such as an AI-based

assistant.

The purpose of this report is to define and describe the INCOGNITO framework architecture,

its components, the interaction between these components and the technologies that will be

used for the implementation of each component. The breakdown of the various components

has also been based on the use cases (pilots) and the technical requirements (user stories)

defined in Deliverable 2.1 of the project.

This document is organized as follows. The general INCOGNITO architecture together with a

brief description of the project is provided in the introduction. In Section 2, an introductory

description of each one the five building blocks of the INCOGNITO platform (technologies

used and architectural components involved) is presented: (a) User-to-device Authentication;

(b) Qualified Anonymity; (c) Identity Acquisition and Management; (d) User-based Consent

Management; and (e) Advanced UI/UX AI-based Assistant. In Section 3, we provide a detailed

description of the various architectural components of the INCOGNITO platform: (a) User

Device (UD); (b) Identity Consolidator (IDC); (c) Identity Provider (IdP); and (d) Service

Provider (SP). We note that, the description of the INCOGNITO architecture in Section 3

follows a different structure that the one mentioned in the description of task T2.3 of the Grant

Agreement. This is mainly because task T2.3 provides a more high-level description of the

three main concepts/building blocks of INCOGNITO, while in this section it is important that

we properly define and describe all the components that must be implemented in order to

properly implement all the functionalities of INCOGNITO, while also following the

specifications defined by the protocols that we utilize. Last, in Section 4 we provide a reference

to all the technologies and protocols that will be used for the implementation of the

INCOGNITO platform and we conclude in Section 5.

 Deliverable D2.3 “Reference Architecture”

5

Table of Contents

Executive Summary .. 4

Table of Contents ... 5

List of Figures ... 6

Table of Abbreviations .. 7

1 Introduction ... 8

2 Authentication and Identity Management in INCOGNITO .. 8
2.1 User-to-Device Authentication .. 9
2.2 Qualified Anonymity ... 10
2.3 Identity Acquisition and Management ... 10
2.4 User-based Consent Management.. 11

3 Architectural Components (Architectural Building Blocks) 12
3.1 User Device (UD) .. 12
3.2 Identity Consolidator (IDC) ... 14

3.2.1 Identity Acquisition Module .. 15
3.2.2 Account Management .. 20
3.2.3 Credential Management ... 23
3.2.4 Authentication Management Module .. 26
3.2.5 Identity Management Module .. 27
3.2.6 AI-based Assistant Backend .. 28
3.2.7 Tor Network ... 29
3.2.8 Blockchain ... 30
3.2.9 Identity Repository and Third-Party API ... 30

3.3 Identity Provider (IdP) ... 31
3.3.1 FIDO2 Server ... 32
3.3.2 QR Authentication Server .. 33

3.4 Service Provider (SP) ... 35

4 Protocols and Technologies .. 35
4.1 FIDO 2 ... 35

4.1.1 Overview .. 35
4.1.2 WebAuthn .. 37
4.1.3 CTAP2 ... 40
4.1.4 FIDO2 integration with INCOGNITO Architecture.. 41

4.2 OAuth 2.0 ... 42
4.2.1 OpenID Connect .. 42
4.2.2 User-Managed Access (UMA) .. 44

4.3 Privacy Attribute-based Access Control (PABAC) ... 54
4.3.1 Idemix .. 55
4.3.2 Attribute-Based Encryption – OpenABE... 60

4.4 Blockchain ... 60
4.4.1 Hyperledger Fabric .. 60
4.4.2 Ethereum .. 61
4.4.3 Quorum .. 61
4.4.4 R3 Corda .. 62
4.4.5 INCOGNITO blockchain Network .. 62

 Deliverable D2.3 “Reference Architecture”

6

4.5 Near-Field Communication (NFC) .. 64
4.5.1 NFC Implementations .. 64

4.6 WebRTC .. 66
4.7 Tor Network ... 67

5 Conclusions ... 68

6 References ... 70

List of Figures

Figure 1. Overall INCOGNITO Reference Architecture ... 9
Figure 2. User Device Protocol Stack View ... 12
Figure 3. TEE and Open-TEE functionalities in INCOGNITO .. 13
Figure 4. Identity Consolidator Stack View .. 14
Figure 5. Identity Acquisition with Identity Consolidator and Verification Component

View ... 16
Figure 6. User Interaction with Physical Identity Acquisition .. 17
Figure 7. Online Identity Acquisition Module .. 19
Figure 8. Credential Issuance using the Credential Management Module 24
Figure 9. Storage Model .. 31
Figure 10. User’s Device Protocol Stack View .. 31
Figure 11. Routing through gateSAFE .. 33
Figure 12. QR Authentication ... 34
Figure 13 Service Providers Protocol Stack View .. 35
Figure 14. FIDO Registration ... 39
Figure 15. FIDO Authentication ... 40
Figure 16. Authorization code flow .. 43
Figure 17. Implicit flow ... 44
Figure 18. UMA general flow .. 45
Figure 19. UMA Flow .. 47
Figure 20. UMA Architecture in WSO2 Server .. 50
Figure 21. Attributed-Based Access-Control component view .. 55
Figure 22. Mapping of INCOGNITO components to the roles of the Idemix Protocol .. 56
Figure 23. Idemix Credential Structure and Data .. 59
Figure 24. Attribute Structure inside a Credential .. 59
Figure 25. Blockchain network ... 63
Figure 26. Mobile ID solution and identity verification process 65

 Deliverable D2.3 “Reference Architecture”

7

Table of Abbreviations

ABAC Attribute-based Access Control

AI Artificial Intelligence

CCS Cryptographic Credentials Storage

CTAP2 Client to Authenticator Protocol

FIDO2 Fast IDentity Online version 2

IDC Identity Consolidator

IdP Identity Provider

LoA Level of Assurance

NFC Near-Field Communication

OIDC OpenID Connect

SP Service Provider

TEE Trusted Execution Environment

UD User Device

PABAC Privacy-Preserving Attribute-based Access Control

PAT Protection API Access Token

RPT Requesting Party Token

RFID Radio Frequency Identification

UMA User-Managed Access

UX User Experience

WebRTC Web Real-Time Communication

 Deliverable D2.3 “Reference Architecture”

8

1 Introduction

The INCOGNITO project is built upon the results produced by the ReCRED project, and the added

value of this project comes from enhancing existing functionalities and utilizing upgraded

technologies.

In addition to the password-less authentication experience and the preservation of users' privacy,

in INCOGNITO platform the User Experience (UX) is considered as a high priority. To this end,

an AI-based assistant will be available to the user in order to assist with actions that need to be

taken regarding identity management and interaction with the service providers. Another feature

brought by the INCOGNITO project is the last FIDO specification1, namely FIDO2, which offers

to the user the ability to use external authenticator factors (such as secure USB tokens), not just

biometric information that can be collected using the user’s device.

Furthermore, INCOGNITO offers an enhanced Identity Acquisition and Management framework.

First, the collected and verified identity attributes are stored on the blockchain, rendering them

available for verification by authorized parties, as well as secure and tamper proof2. The blockchain

technology will also be utilized to track changes regarding granting and gaining access to user

identity attributes, in order to avoid disputes and log information that may be needed when

conducting an audit or investigation. User-Managed Access (UMA) protocol will also assist in

this, giving the user complete control over the policies he sets and over who may have access to

the corresponding identity attributes[1].

2 Authentication and Identity Management in INCOGNITO

In this section, we introduce the INCOGNITO reference architecture, and we provide an overview

of how authentication and identity is realized in INCOGNITO. We also describe how the different

building blocks of the INCOGNITO framework communicate with each other in order to achieve

user authentication and guidance through the client application, while granting access to services

by sharing only the required identity attributes with the Service Providers.

Figure 1. Overall INCOGNITO Reference Architecture presents the reference architecture of the

INCOGNITO platform, which includes all the main components and the interconnections between

them. The protocols and technologies that will be used to implement this architecture are described

in Section 4. The detailed specifications of the protocols and the components of the architecture

will be described in detail in the corresponding work package deliverables.

1 https://fidoalliance.org/specifications/overview/
2 https://lup.lub.lu.se/student-papers/search/publication/8919957

https://fidoalliance.org/specifications/overview/
https://lup.lub.lu.se/student-papers/search/publication/8919957

 Deliverable D2.3 “Reference Architecture”

9

Figure 1. Overall INCOGNITO Reference Architecture

2.1 User-to-Device Authentication

The User-to-Device Authentication is the block which triggers the whole flow of the INCOGNITO

platform. Each authentication at the Identity or Service Providers, each update a user makes

regarding his identity at an online service, each transfer of identity attributes between entities are

related to the user authentication to his/her own device. This is how all the interactions between

parts of the system are securely taking place.

INCOGNITO takes advantage of the technologies available on the modern mobile phones, that are

described in this paragraph. The user interacts with the user device through the device specific

secure authentication mechanism, such as biometrics (face recognition, fingerprints) or a pin.

These pieces of the user’s characteristics are converted in cryptographic keys that are securely

stored on the user’s device. For this purpose, the device comes with a module called Trusted

Execution Environment (TEE) which is an integration between a Trusted OS and hardware

features that work together to accomplish the necessary security requirements. The main focus is

set on ensuring that the user’s characteristics stored on the user’s device will not leave the device

even in the case of a failure of the OS. On top of the TEE, a Cryptographic Credential Storage

(CCS) runs, and it is there that the generated keys are stored on the user’s device.

INCOGNITO allows the user to authenticate to their device through roaming authenticators whose

usability is enabled by the use of the FIDO2 protocol. These authenticators are connected to the

user device when necessary and they are being interacted with by the user in order to prove that

they own the connected authenticator. This authentication method is described in more detail in

the Protocol and Technologies chapter - FIDO2 subsection.

 Deliverable D2.3 “Reference Architecture”

10

There is one main requirement of the user-to-device authentication regarding security:

INCOGNITO has to make sure that the user’s characteristics never leave the user’s device and that

any further transfer of information is authorized through cryptographic protocols that use

cryptographic keys generated from the user’s characteristics. In this way, the user’s physical

attributes are kept secure and the user is not in danger of being subject to malicious use of physical

personal data.

2.2 Qualified Anonymity

We ensure “qualified anonymity”, which means, that the online service does not have any

information about the user but a pseudonym. In order to achieve that we incorporate federated

login solutions such as OpenID Connect3 (OIDC) with anonymous credential systems such as

Idemix[2] or OpenABE4. This allows the Online Services to receive a limited subset of the user’s

identity attributes that will guarantee that the user is qualified to access a resource. Cryptographic

credentials can be used by the user in order to prove ownership of an identity attribute; the

cryptographic credentials are submitted to the Identity Provider which utilizes the corresponding

cryptographic credentials stack (Idemix or OpenABE), and ultimately the identity attributes are

communicated to the Service Provider using OIDC. At the same time the user will remain

anonymous, hence achieving the desired concept of Qualified Anonymity. Without that solution,

the users would have to share their identity in its entirety with the service providers, in order to

utilize the services, they want. TOR5 network is also utilized in order to boost anonymity when

identity attributes are communicated through utilization of cryptographic protocol stacks like

Idemix between the users and the Identity consolidator. This building block is further detailed in

Section 4.3.

2.3 Identity Acquisition and Management

The Identity Acquisition can take place either physically or virtually (online). In order to cover

both of these cases, two corresponding modules will be created, the Physical Identity Acquisition

module and the Online Identity Acquisition module. The utilization of TEE[3] on the devices used

to acquire the identity attributes contributes to our goal of meeting the requirements set by the

GDPR6, ensuring the security of the identity attributes from the design phase of the platform. The

integration of blockchain technology adds to that, by ensuring that the users’ identity attributes

cannot be altered by unauthorized entities.

The Physical Identity Acquisition module is responsible to acquire and verify the identity attributes

included in a user’s real-world identity (such as passport, national ID card, driving license, etc.).

A Near-Field Communication[4] (NFC) protocol will be integrated to easily, quickly and securely

acquire the identity attributes from the end-user RFID-enabled physical ID documents (e.g., eID,

e-Passport, etc.). In addition, the WebRTC7 protocol will be integrated in INCOGNITO, and will

3 https://openid.net/connect/
4 https://github.com/zeutro/openabe
5 https://www.torproject.org
6 https://gdpr-info.eu/
7 https://webrtc.org/

https://openid.net/connect/
https://github.com/zeutro/openabe
https://www.torproject.org/
https://gdpr-info.eu/
https://webrtc.org/

 Deliverable D2.3 “Reference Architecture”

11

be enhanced with the required features so that we are able to offer remote identity verification. The

process that an end-user has to follow is separated into two parts the acquisition and the verification

of the identity attributes. On top of that, user identities that reside in the cyber space belong mainly

to IdPs related to social networks (e.g., Facebook, LinkedIn). The goal of this module is to obtain

the identity attributes of the user from such IdPs and consolidate that information to the IDC. The

online identity acquisition module has two main processes, the acquisition of the identity attributes,

and their integration to the user’s profile.

2.4 User-based Consent Management

User-based consent management is one of the basic pillars of the INCOGNITO platform since its

main goal is to offer security and privacy to its users. INCOGNITO not only secures identity

transfers or protects users’ privacy, but it also enables the users to gain more control and flexibility

upon their shared identity attributes.

The protocol that enables user-based consent management in INCOGNITO is User Managed

Access (UMA). The protocol relies on the use of an authorization server which is in charge of all

the preferences set by the user regarding his identity. UMA enables users to define policies at the

authorization server which will then be used asynchronous to the users’ online presence in order

to allow access to the identity attributes. These policies offer a great spectrum of flexibility since

the user can choose to share a certain attribute only with a certain Service Provider or can create

different policies regarding different identity attributes with different degrees of access. Using

UMA, the user takes control over their identity and can restrict the control of the Identity

Consolidator over their own identity attributes. For example, if the Identity Consolidator has the

ability to share name, age and address with a certain Identity Provider according to a degree of

trust, the user can restrict the Identity Consolidator to only share their age with the respective

Identity Provider. As an additional feature coming to guide the user in managing his identity, the

INCOGNITO project also bounds the User-based Consent Management to an AI-based assistant

which will have the necessary knowledge so that it can inform the user about the information

needed to be disclosed to a certain entity and the risks the user is exposed to. As a result, the user

can exercise their authority upon their identity management by means of giving their consent

regarding the disclosure of their requested identity attributes. The communication between the user

and the AI-based assistant is mediated by a highly intuitive User Interface. The user interface

manifest either as a web interface or a mobile application. Furthermore, UMA will be enhanced

by being integrated with ABAC. Together they will provide fine-grained authorization capable of

dealing with dynamic and complex access relationships scenarios.

The technical way according to which user-based consent management manifests in INCOGNITO

is described in more detail in the Protocol and Technologies chapter, User Managed Access

section. There are described all the components necessary to implement the user-based consent

management and explained by means of figures. The section goes even more into detail describing

the actual implementation of UMA that INCOGNITO is going to use and the whole process of

selection for the most suitable UMA server for the goals and needs of the project.

 Deliverable D2.3 “Reference Architecture”

12

3 Architectural Components (Architectural Building Blocks)

In this section, we describe the reference architecture of the INCOGNITO platform focusing on

the main architectural components.

The main components of the INCOGNITO architecture are the following:

1. User Device (UD)

2. Identity Consolidator (IDC)

3. Service Providers (SP)

4. Identity Providers (IdP)

5. Decentralized Identity Management

3.1 User Device (UD)

User’s Device

Identity and Access Control
Management Application

QR Client

FIDO2
 Client

Federated
Logins

Identity
Acquisition

Cryptographic
Credential Interface

FIDO2
Authenticators

Idemix

Cryptographic Credentials Storage

AI-based Assistant
Figure 2. User Device Protocol Stack View

In INCOGNITO, the user mobile device is one of the main components as we intend to achieve a

device-centric authentication. In order to achieve the authentication phase between the user and a

remote service, the FIDO2 protocol is used. This module consists of the FIDO2 Client and the

FIDO2 Protocol stack which both run on the user device and communicate with the Relying Party.

Furthermore, INCOGNITO supports Attribute-Based Access Control (ABAC)[5] cryptographic

credentials to Identity Providers.

The user's cryptographic credentials, which are received from the Identity Consolidator and the

multiple IdPs, are stored in the cryptographic credentials storage that is allocated in the user's

device. Also, to enhance the security of the credentials of the user, the cryptographic credentials

storage takes advantage of the user device's Trusted Execution Environment (TEE) capabilities. A

cryptographic interface is also included in the user device which communicate with the Idemix

protocol stack that are installed on the user’s device. The Idemix credentials that are saved in the

Cryptographic Credential Storage can be released from these stacks.

To enhance the TEE capabilities of the user device we use the Open-TEE9 which is an open-source

project where we can develop critical functionalities for anonymous credential protocols (Idemix

for INCOGNITO).

 Deliverable D2.3 “Reference Architecture”

13

Figure 3. TEE and Open-TEE functionalities in INCOGNITO

For authentication and authorization purposes between the IdP and SPs, the user device runs

federated login protocols (OpenID Connect/OAuth 2.0). In addition, we integrate FIDO2 for

authentication between the user device and the Identity Provider, which supersede the standard

password paradigm.

The user has the option to control his identity information with the identity and access control

management application, which is also included on the user device and communicates with the

IDC. The application enables the user to manage his identity attributes exposed to each Service

Provider. The user can also issue cryptographic credentials from his identity attributes directly to

his device and use them for ABAC. The consent management is also included in the application

and ID privacy functionality that enables the users to have knowledge and control over which

Service Provider knows which aspects of his identity.

On the user device there is also an AI-based Assistant, which communicates with the Identity

Consolidator to inform the user, as well as to guide him into properly managing his/her identity.

The AI-based Assistant notifies the user, for example, about the minimum identity attributes

required to be revealed to the Service Providers in order to get access to its resources. Also, the

AI-based Assistant has the ability to inform the user about the risk of revealing specific identity

attributes to Service Providers which in turn may enable the SPs to infer complete identity of the

user.

The device has an identity acquisition module that will allow the user to quickly and securely

acquire identity attributes from online identities (Facebook account, etc.), as well as his/her

physical ID Documents (e-Passports, eID, etc.) with the Near-Field Communication (NFC)

protocol. The user will have the option to store the acquired and verified identity attributes to the

IDC.

The QR client is a module which is also included on the user device for transferring the credentials.

The user can scan a QR code to access the Service from his browser while he already authenticated

using his mobile device. The Identity Provider uses the QR code to verify that the user is

authenticated and permits the user to create a new session without the need for re-authentication.

 Deliverable D2.3 “Reference Architecture”

14

3.2 Identity Consolidator (IDC)

Identity Consolidator

Identity and Access Control
Management Application

Identity Acquisition and
Verification

Consent
Management

Authentication
Management

Account
Management

Credentials
Management

Verification
Algorithms

Federated

Logins

ID attributes
interference
algorithms

QR
Auth.
Server

FIDO2–
enhanced
Keycloak

LATCH

Idemix

FIDO2
Server

Identity Attribute Store AI-based Assistant
Back-end

Identity Consolidator Data

Figure 4. Identity Consolidator Stack View

The Identity Consolidator is the central node of INCOGNITO, integrating different modules

described in the following sections. Firstly, the Identity Consolidator is the place where the online

identity of the user lies. It has modules that gather real-world and online information about a user

and makes one central trusted identity. After transposing this user information into identity

attributes at the Identity Consolidator, the latter acts as a connection point between the user and

Identity or Service Providers. It mediates and makes trustworthy the communication needed for a

user to get access to a Service Provider’s resources by generating cryptographic credentials for the

users in order to authenticate at different Service Providers or by hosting different servers such as

FIDO2 for secure authentication or UMA for user-based content management. It also enables the

user to manage their own identity through modules such as Account Management Module or

Identity Management Module. Therefore, the user can enhance the security of their account and

can also restrict the control of the Identity Consolidator over their identity by making use of the

UMA server. The user can set policies that have a higher priority over the identity attributes than

the level of assurance calculated by the Identity Consolidator at the moment of the integration of

the information gathered from different Identity Providers about the user’s identity.

The Identity Consolidator also enables the user to make use of the services of an AI-based assistant

that will assist the user in the management and disclosure of their identity. The AI-based assistant

will have the expertise to prevent the user about potential risks and allow them to take actions

regarding this matter, as well as being also in charge of taking actions itself in order to protect

user’s privacy and security.

Two different layers of security are added by using a Tor Network to mediate the communication

between the user and the Service Providers and blockchain to log user’s interactions with the online

services such as Identity Consolidator or Service Providers.

Since the Identity Consolidator was a component in the ReCRED project too, many of the basic

components such as Account or Credential Management are also detailed in the respective project.

 Deliverable D2.3 “Reference Architecture”

15

Among these modules, other new features and technologies were also added in this deliverable

such as a FIDO2 server, a UMA server, the back-end software stack of the AI-based assistant and

blockchain technology.

3.2.1 Identity Acquisition Module

The Identity Acquisition Module performs vertical and horizontal binding of the user’s identity. It

contains two modules which bind the real-world identity and the various online identities into one

trusted online identity stored at the Identity Consolidator. The first module – Physical Identity

Acquisition Module performs a vertical identity binding of the real-world characteristics of the

user to the online identity attributes. The second module – Online Identity Acquisition Module

performs horizontal binding between different digital identities of a user stored across multiple

online sources such as social networks (Facebook Identity, Google Identity etc.). Together, the

two modules create a trusted online identity which abstracts the real-world identity of the user

through processes that perform reliable and secure validation of the match between the user’s real-

world identity and their online identity attributes.

3.2.1.1 Physical Identity Acquisition Module

The Physical Identity Acquisition Module binds a user’s real-world identity with the online

identity through information gathering from physical proofs such as passport or identity card. The

real-world identity is transposed in the online world as verifiable identity attributes saved at a

trusted provider. The means through which the attributes are collected are an application

implemented on smart trusted-computing-enabled devices and a web application.

 Deliverable D2.3 “Reference Architecture”

16

Figure 5. Identity Acquisition with Identity Consolidator and Verification Component View

The Physical Identity Acquisition consists of two steps: The Identity Acquisition Process and the

Identity Verification Process which will be detailed in the sections below.

The Identity Acquisition Process is in charge of gathering physical characteristics of the user or

physical identity documentation using the user’s device. The acquisition is mediated by sensors

located in commodity mobile devices (fingerprint scanner, camera for face recognition, GPS for

location) or communication protocols (i.e., NFC to scan ePassports, WebRTC for remote identity

verification) and the transmission of the received information takes place through trusted software

paths. The following step is to transfer all this data to the Identity Verification Process which will

verify the acquired characteristics through crowdsourcing and automated techniques acting along

with user security and privacy preserving. The following figure explains how the user interacts

with the Physical Identity Acquisition Module.

 Deliverable D2.3 “Reference Architecture”

17

Figure 6. User Interaction with Physical Identity Acquisition

A. Identity Acquisition Process

For the Identity Acquisition Process, the INCOGNITO project provides the user with a web or

mobile interface which will enable the user to declare their identity information such as name,

address, identity card number etc. The information gathering also involves storing data from the

physical documents which are scanned through NFC or captured by the user with the camera.

Further, the extraction and verification of the desired identity attributes (i.e., date of birth, age,

name) takes place and it usually involves the user too. The user has the role to crop the required

information from the images taken with the camera.

B. Identity Verification Process

The Identity Verification Process receives all the information gathered through the Identity

Acquisition Process and it uses peer-to-peer verification and automated means in order to securely

verify identity information. The techniques used are described below:

 Deliverable D2.3 “Reference Architecture”

18

A. Peer-to-peer verification is a crowdsourcing technique used in INCOGNITO with the

purpose of verifying the validity of the acquired user personal data and physical

characteristics. A user first declares personal information through the Identity Acquisition

Process and then he provides real-world proof of the information declared such as identity

card photos. Through the peer-to-peer technique, the platform crowdsources the acquired

information to other users of the platform who will verify the compatibility between the

provided proofs and the declared information. So that during this process no one has access

to reusable of forgeable photos of the user’s documents, watermarking and cropping

techniques are involved.

B. Face Detection and Recognition is used to check that a user’s photo matches their identity

card photo. The technique first identifies the presence of a face in an image and in case

there is one, the recognition of the user’s face follows.

C. Optical Character Recognition (OCR) is used to identify and check user data. When a

user crops parts of an image corresponding to certain pieces of information, OCR technique

verifies if the cropped parts contain any characters and if so, they will be checked for

compatibility with the information introduced by the user.

As soon as the information has been checked, it will be stored as independent identity attributes in

the Identity Repository of the Identity Consolidator component.

3.2.1.2 Online Identity Acquisition Module

The Online Identity Acquisition Module is in charge of integrating multiple online identities of the

user into one. The user has to accept to integrate other online identities at the Identity Consolidator.

All these online identities lie at different Identity Providers such as Google or Facebook and will

be gathered through OpenID Connect / OAuth or Facebook Connect at the Identity Consolidator

which will further verify the validity of the acquired information by means of the Identity

Integration Module and then store it.

A. Online Acquisition Process

The Online Acquisition Process binds a user’s online identities into one that is stored at the Identity

Consolidator. So that the Identity Consolidator could be able to gather information from a certain

Identity Provider, the user first has to authenticate at that Identity Provider and then attributes such

as name, date of birth, address will be extracted, verified and stored in the Identity Repository from

the Identity Consolidator. The figure below describes how the Online Identity Acquisition Process

works:

 Deliverable D2.3 “Reference Architecture”

19

Figure 7. Online Identity Acquisition Module

B. Identity Integration Module

Since a user has digital identities spread across multiple sources such as social networks, blobs,

portals or systems, they are managed and stored separately. Therefore, it is necessary to standardize

and normalize the information in order to unify it into one identity. The Identity Integration Module

provides exactly the integration between these different pieces of information in three main steps:

data extraction, data transformation and data storage. The data extraction will happen through the

Identity Provider API or by the non-user assisted module using web crawlers. The following steps

are to transform the information and store it in the database by calling the Identity Attributes

Storage API.

The Identity Integration module gathers together and connects all the acquired characteristics of

the user and verifies their validity through means of statistical data analysis techniques. This

module can also deduce missing identity attributes and is responsible for assigning confidence

scores for the accuracy of the attributes and for labelling identity attributes based on their origin.

For example, the Identity Consolidator should be able to tell verifiers that user A is more than 18

years old with confidence 90%. The considerations preceding the results are:

1. We assume that each Identity Provider has a list of pre-defined attributes and a predefined

Level of Assurance (LoA).

2. For each attribute that needs to be transferred to the Identity Consolidator we make the

following assumptions:

 Deliverable D2.3 “Reference Architecture”

20

a. If an attribute is present only in one Identity Provider, it passes immediately to the

unified profile with a confidence score that matches the LoA of the Identity

Provider.

b. If an attribute is present in multiple Identity Providers that have different LoAs:

i. If the attribute value is the same for all Identity Providers, the attribute is

passed to the unified profile and the confidence score is equal to the highest

LoA of the Identity Providers.

ii. If the attribute value is not the same for all Identity Providers, we introduce

the term Penalization Factor. In this case, the attribute with the highest LoA

is selected and added to the unified profile and the confidence score is

calculated by subtracting the highest LoA with the penalization factor. The

penalization factor (PF) increases with the number of mismatches in the

attribute value but will be in any case higher to the Highest LoA -1. For

example, we have three Identity Providers (IdP1 with LoA = 4, IdP2 with

LoA = 3 and IdP3 with LoA = 2). The consolidated attribute will be the one

provided by IdP1. If IdP1 mismatches with only IdP2 or IdP3 the CS will

be 4 - PF1 (e.g., PF1 = 0.25 and CS = 3.75). If IdP1 mismatches with both

IdP2 and IdP3 the CS will be 4 - PF2 (e.g., PF2 = 0.5 and CS = 3.5).

c. If an attribute is present in two or more Identity Providers belonging to the same

LoA and there are discrepancies with regard to the value, there will be a predefined

ranking between the Identity Providers belonging to the same LoA and the selected

value of the attribute will be the one belonging to the highest ranked provided. For

mismatches we will use a penalization factor similarly as explained in the previous

case.

3.2.2 Account Management

The Account Management Module is in charge of the online accounts of the user and the way they

are exposed to authorized parties. It enables the users to register an Identity Provider with the

Identity Consolidator in order to allow the IDC to extract data about its online identity from the

Identity Provider. The Account Management Module is in charge of the user’s account recovery,

storing an IdP’s URL and the corresponding username.

The process for account recovery contains the following steps:

1. If the Credentials Management Module does not have the secret key for the Identity

Provider for which the account recovery takes place, then it initiates the Identity Provider’s

specific account recovery procedure.

 Deliverable D2.3 “Reference Architecture”

21

2. If the Credentials Management Module has the secret key for the Identity Provider for

which the account recovery takes place, then the Account Management Module retrieves

the secret key and stores it on the new device. In this case the Identity Provider is left out

of the recovery procedure.

The functionalities provided for the user by Account Management Module are:

1. Identity Provider Registration: The user can register and Identity Provider with the

Identity Consolidator.

2. User account deletion: The user can delete their account from the Identity Consolidator.

3. Account Recovery: For the account recovery process, the user is presented with a list of

the accounts he previously registered at the Identity Consolidator from which he can choose

for which one to recover the secret key in order to save it on another device.

4. Latch / Unlatch online accounts: The user can access his list of online accounts and latch

(lock) or unlatch (unlock) them. He can also set policies to automatically latch or unlatch

accounts.

5. View history of latch changes: The user can see the history of the accounts and if they

were locked / unlocked by himself or the Identity Consolidator through the use of policies.

6. Define account locking policies: A user can define policies in order to automatically lock

or unlock accounts. For example, if a user decides to lock his email account during

weekends. The Identity Consolidator has the ability to lock / unlock a user’s account if it

decides that there is a high risk of account compromise.

7. Configure a Degree of Privacy: When a user wants to increase or decrease the level of

privacy to which his account is exposed to the Identity Consolidator, he can choose

between a highest or lowest degree of privacy.

There are two types of degree privacy in INCOGNITO’s Identity Consolidator:

1. Highest degree of privacy: In this case, the Identity consolidator acts as a discovery

service under a Federated Identity model. It will only save the name, surname, the identity

document number of the user and the Identity Provider where a certain attribute of the user

is stored. Whenever a Service Provider needs that specific attribute, the Identity

Consolidator reveals to the Service Provider the Identity Provider where it will be able to

find the identity attribute it needs to allow access to its services.

2. Lowest degree of privacy: In this case, the Identity Consolidator will store all of the user’s

identity attributes and the credentials used to access external Service Providers. For this

feature, the Account Management Module interfaces with the Identity Profile Management

and the Credential Management module.

3.2.2.1 Identity Federation

 Deliverable D2.3 “Reference Architecture”

22

The Account Management Module along with the Identity Profile Management provide Federated

Identity services in INCOGNITO. When a Service Provider needs some attributes, but they do not

exist at the respective Identity Provider, the latter queries the Identity Consolidator for the missing

attributes. If the Identity Consolidator has the attributes stored on the Identity Repository, it will

answer with the identity attributes themselves, otherwise it will redirect the Service Provider to

the Identity Provider who owns the requested attributes. Regarding the Federated Identity services,

the Identity Consolidator acts as a discovery service for the source of the requested attributes.

The Identity Consolidator has a complete list of the identity attributes of a user and the Identity

Providers where they are found. If the Identity Consolidator itself does not know the needed

attributes, then it will redirect the Service Provider to the Identity Provider owner of the attributes.

If the user has set his account’s privacy degree as the highest, then the Identity Federation services

will be the only way the Identity Consolidator interacts with the user and the Identity Providers.

In case of a lowest degree of privacy, the Identity Consolidator either knows all of the user’s

identity attributes or it can also act just as a discovery service since the user may opt not to allow

the Identity Consolidator to transfer all his attributes from the Identity Provider.

3.2.2.2 Latch

In INCOGNITO, the functionality of a Latch is to temporarily enable or disable user accounts at

third-party services. Despite having this functionality, it does not replace the identity management

service at Service or Identity Providers, but merely adds an extra layer of security on top of the

authentication layer. A third-party server must still implement and manage its own mechanisms to

authenticate users.

So that a user could use the latch mechanism on his account, he must first create an account at the

Latch Server and then pair his third-party accounts to the Latch account. In order to successfully

complete this step, the third-party server must support latch. After the pairing process, all the

accounts of the user at the Latch Server can be latched or unlatched at will. While an account is

latched, it cannot accept authentication attempts from the respective user until it is unlatched again.

The process takes place through the HMAC-SHA1 algorithm. A third-party server must register

its application with the Latch Server and then receive its applicationId that identifies it at the Latch

Server and the applicationSecret that is used to authenticate requests made to the Latch Server. On

the other hand, the users must also create a Latch account and receive a userId and a userSecret

that is used to authenticate requests made to the Latch Server.

The most common operations supported by the Latch functionality are described in the following

list:

1. Account Pairing: Account pairing takes place after a user has received a 6-char random

string token from the Latch Server. The token will be sent to the third-party server and will

be exchanged with the Latch Server for a 64-char accountId that represents the third-party

account at the Latch Server.

2. Check Status: Using the accountId, a third-party server has the ability to query a latch

server about the status of its account (check if the account is latched or unlatched).

 Deliverable D2.3 “Reference Architecture”

23

3. Change Status: A user can change the status of their third-party accounts at the latch server.

4. Latch Support Tool: Considering the goals of the INCOGNITO project, the latch

functionality will be adapted to secure users’ data. An Account Locking Mechanism will

be implemented in order to allow the Identity Consolidator to latch all of the accounts of a

user in case of theft or other identity disclosure risks.

3.2.3 Credential Management

The Credential Management Module in INCOGNITO relies on the integration of the Idemix

cryptographic engine to issue cryptographic credentials on the user devices. This module will be

an extension of the cryptographic functionalities provided by the INCOGNITO credential issuance

module running at the Identity Providers. The issued credentials include a set of cryptographic

attributes which are either stored at the Identity Consolidator or managed by a third-party Identity

Provider. If the third-party Identity Provider supports the issuance of cryptographic credentials,

then the user device will be redirected to the respective Identity Provider when requesting

credential issuance, otherwise the Identity Provider will rely on the Identity Consolidator’s

cryptographic credential issuance.

There are two main challenges regarding the development of the Credential Management Module:

1. To securely map the identity attributes acquired from the Identity Consolidator to

cryptographic credentials which will be issued on the user’s device.

2. To provide interfaces and functionalities to enable the credential issuance from different

sources.

In order to start the credential issuance process, the user has to be authenticated with his personal

device which is further authenticated with the Identity Consolidator. Another alternative is to

authenticate with the web interface provided by the Credential Management Module in order to

start the credential generation process. The user should trust the Identity Consolidator since it is in

charge of the matching checks between the identity attributes and the requested credentials before

the actual issuance starts. In the end, the generated credentials are stored on the user’s device and

could also be backed up on the Identity Consolidator if the user chooses so. The Identity

Consolidator must offer strong encryption in order to secure the backup process of the user’s issued

credentials. The following figure provides the high-level architecture of the Credential

Management Module.

 Deliverable D2.3 “Reference Architecture”

24

Figure 8. Credential Issuance using the Credential Management Module

The ways in which the Credential Management Module enhances the Identity Consolidator so

that it could support cryptographic credential issuance are:

• The Credential Management module may serve as a trusted Identity Portal for External

Identity Providers supporting INCOGNITO credentials issuance. Indeed, both the user

requesting the issuance of a credential and the involved Identity Provider can exploit this

functionality to request the Identity Consolidator to authenticate related parties. The

Identity Provider and the Identity Consolidator exchange user authentication/sign-on

information. Then the user is redirected to the Identity Provider which does not require a

new sign-on or identity verification and is thus able to issue directly (or by means of the

Identity Consolidator) credentials to the user.

• The Credential Management module may provide to the user the functionality of trusted

redirect to Identity Providers supporting INCOGNITO credentials issuance. The user

contacts the Identity Consolidator in order to request a credential from an Identity Provider,

as above. In this case the IDC does not directly interact with the Identity Provider, but it

simply redirects the user to the Identity Provider. Since there is no direct interaction

between the Identity Provider and the Identity Consolidator, the user has first to

authenticate to the Identity Provider. The issuance procedure then occurs directly between

the Identity Provider running the INCOGNITO issuance module and the user.

• Identity Providers that do not support the INCOGNITO issuance module can take

advantage of the Identity Consolidator proxy feature to issue credentials through the

Credential Management module. In this case, the user contacts the Identity Consolidator

and requests the issuance of a credential from an Identity Provider which does not support

 Deliverable D2.3 “Reference Architecture”

25

the INCOGNITO credential issuance module. The Identity Consolidator interacts with the

external Identity Provider, acquires from it the appropriate attributes, and issues the

requested credential through the Credential Management module on behalf of the third-

party Identity Provider.

The supported Credential Management Module operations exposed to the users are:

1. Issue cryptographic credentials: INCOGNITO supports different credential formats which

can be generated either by the Identity Consolidator or by the Identity Provider. There are

times when the credentials can be automatically issued in order to grant access to an online

service, according to specific rules defined by the provider.

2. List supported attributes per IdP: The user has access to a list of all the Identity Providers

and the attributes they support.

3. List issued cryptographic credentials: The user can access a list of all the credentials that

have been issued to their device.

4. View issued cryptographic credentials’ details: The user can access more details upon

selection of an issued credential, such as issued date, expiration date etc.

5. Reissue expired cryptographic credentials: The user can select an expired credential in

order to renew it. The user can also set the Identity Consolidator to automatically renew an

expired credential.

6. Encrypt / decrypt cryptographic credentials: The user can select one or more credentials in

order to encrypt or decrypt them.

7. Backup cryptographic credentials: The user can opt to save the credentials at the Identity

Consolidator. The transfer of the credentials from the user device to the IDC takes place

through a secure channel. The user can enable automatic backup of the credentials at the

Identity Consolidator.

8. Restore cryptographic credentials: A user can restore on his device the credentials backed

up at the Identity Consolidator.

9. Erase cryptographic credentials: The user can select which credentials to erase and he can

choose to delete them from the user device, Identity Consolidator or both.

The supported Credential Management Module operations for the Identity Providers are:

10. Manage supported identity attributes: The Identity Provider administrator is presented with

all the identity attributes needed by various credential templates and choose which ones are

supported by the Identity Provider. In order to generate a credential, it is necessary that the

Identity Provider support all the identity attributes used by the credential template.

11. Issue cryptographic credentials: An Identity Provider administrator can issue credentials

manually which may or may not have an expiration date. The credentials will be sent to

the user’s device.

12. List issued cryptographic credentials: The Identity Provider administrator can access a list

of all the credentials that have been issued.

13. Revoke cryptographic credentials: The Identity Provider administrator can revoke a

specific credentials. As a consequence, the user will not be able to use it anymore.

 Deliverable D2.3 “Reference Architecture”

26

14. View statistics: The Identity Provider administrator can see statistics regarding

cryptographic credentials issued by the IdP.

3.2.4 Authentication Management Module

The Authentication Management Module offers a variety of authentication methods which are

mainly designed to work according to a certain Level of Assurance (LoA). Each level of assurance

is bound to a certain authentication error. As the consequences of an error increase, the level of

assurance increases too. The supported authentication methods comply with the Levels of

Assurance defined by the National Institute of Standards and Technology (NIST) and with the

errors specified for each LoA. Each LoA allows token methods for all of its lower levels.

INCOGNITO offers the user a mobile application for the Authentication Management Module.

The user registers with the Identity Consolidator up to a Level of Assurance which depends upon

the proof of his identity that the user has provided and whether his device or the Identity Providers

support the appropriate soft or hardware cryptographic tokens. As part of the registration, the

Identity Consolidator issues FIDO credentials on the user’s device. The registration can also

happen through federated means. A user by means of an Identity Provider will provide through

OpenID Connect proof to the Identity Consolidator that he has an account with the respective LoA

at the Identity Provider. It is mandatory for the IDC to trust the Identity Provider for the given LoA

in order to accept a registration through federated identities.

The user registers and authenticates at the Identity Consolidator using FIDO credentials issued by

the Identity Consolidator. The LoA to which a user authenticates at the IDC depends on the

authentication method which is decided by the Identity Provider according to the NIST guidelines.

For example, if the user authenticates to the IDC solely by using their IDC-issued FIDO credential,

he is considered authenticated at LoA 3. If the authentication of the user is undertaken using the

FIDO credentials that are stored in the TEE capabilities of the user’s device and are protected by

the hardware, then the authentication is considered LoA 4. As soon as the user is authenticated, he

can alter attributes (view, transfer, delete) according to the LoA level. The Identity Provider can

set policies to restrict user’s access to attributes depending on his session of LoA. Once the user is

authenticated to both the Identity Consolidator and Identity Provider, he can transfer attributes

from the Idp to the IDC having the minimum LoA of the two different accounts at the IdP and

IDC.

The LoA levels and the way there are achieved are presented below:

• LoA 1 and LoA 2 can be achieved through password tokens or soft cryptographic tokens.

• If the soft cryptographic tokens are used for multi-factor authentication, then LoA 3 can be

achieved (i.e. FIDO authentication).

• If hard tokens are used for multi-factor authentication, then LoA 4 can be achieved (i.e.,

FIDO authentication with keys stored in TEE).

 Deliverable D2.3 “Reference Architecture”

27

The Account Management Module provides recovery mechanisms for cases when users cannot

authenticate to their Identity Consolidator accounts. These mechanisms are represented by sets of

questions defined at the registration with the Identity Consolidator, SMS verification and proof of

possession of online accounts.

3.2.5 Identity Management Module

The Identity Management Module is a framework that offers users various functionalities in order

to securely manage their identities in INCOGNITO. The module is divided into two submodules:

The Identity Management and the Consent Management. It contains an identity matrix which

contains different types and range of identifiers and unique user identity attributes. Among the

functionalities the Identity Management offers, we can count the transfer of reputation and other

identity attributes between Identity Providers, the creation of partial verifiable profiles which

enable the user to share only selected attributes with a certain Service Provider or the consent for

the management of their identity attributes.

The Identity Management Module enable two interfaces for the user:

• Identity Data Management: The user has access to its data stored in the Identity Repository

and can update some attributes if the Identity Consolidator’s policies for those attributes

allows this. The updating process can sometimes trigger the identity acquisition and

verification process. When the attributes have been updated at the Identity Consolidator,

all the online services storing the respective attributes are informed regarding the change.

• Shared Identity Attributes: The user can see all the identity attributes that are shared with

online services and the respective online services.

3.2.5.1 Identity Profile Management Module

The Identity Profile Management submodule enables the user to use an interface in order to

manage Identity Providers’ and Service Providers’ access to their identity attributes. The user can

use this module to share identity attributes between different Identity and Service Providers,

transfer that happens according to the policies defined within the identity consent management

module. The attributes can also be transferred to or from the Identity Consolidator, process which

takes place by means of federated identities and online identity acquisition module. The user can

only view, delete and insert attributes that comply with certain attributes. The LoA of an attribute

depends upon the identity proofing mechanism that was used to verify it. The LoA of a user session

depends upon the authentication mechanism. The LoA of the transferred attributes is decided by

the consolidator by taking into account the minimum LoA of the attribute and the user session.

The user can also determine the risk of Identity or Service Providers by inferring attributes that

were not revealed to them. These risks are calculated through statistical analysis of correlated

identity attributes. As mentioned above, the user is also enabled to create and manage partially

verifiable profiles.

 Deliverable D2.3 “Reference Architecture”

28

3.2.5.2 Consent Management Module

The Consent Management Module enables the users and Identity providers to give their consent

regarding the shared identity attributes. INCOGNITO automates this process through policies that

are stored at the Authorization Server which will then be able to give a client access to some

resources asynchronous to the presence of the user who owns the attributes.

The Consent Management Module has two submodules:

• User-defined policy: The user can define policies at the Authorization Server in order to

control which attributes should be shared and with what Identity or Service Providers.

Using these policies, the user is assured that his identity attributes are shared according to

his consent without even being online at the moment of the user data sharing.

• Identity Provider-defined policy: This submodule is responsible for obtaining policies for

individual attributes from Identity Providers, ensuring that the Identity consolidator reveals

attributes to Service Providers according to these policies.

3.2.6 AI-based Assistant Backend

The INCOGNITO project aims to use an advanced UI/UX AI-based assistant (AIAS) which will

focus on facilitating identity management tasks by offering an intuitive, user-friendly interface

between the INCOGNITO services and the end-users. The AIAS will be present in both the mobile

and the web version of the INCOGNITO user interface and will be able to inform the user about

Identity management related tasks, but also to provide and execute actions on them. In order to

achieve this, the basic architectural components will include two communication components, one

residing on the client (web and mobile) and another one residing on the server (IDC). On the IDC

there will be an engine that will perform correlations based on user data, user input or inquires and

a set of rules that will generated by machine learning algorithms as well as pre-defined actions to

support the INCOGNITO functionalities.

For the implementation of the back-end machine learning component we will use Rasa HQ8. The

advantages over commercial APIs provided by third party, are privacy and avoiding vendor lock-

in, since it is not always possible to download all the data and logic from third party APIs.

On the client side (web and mobile) we will implement upon existing open-source chatbot UI

implementations for Android and the Web (e.g.). The client-side of the AI-based Assistant will act

as the interface that captures the user input and inquires and passes them to the client

communication component that will in turn send them to the back-end for analysis. All the

8 https://github.com/RasaHQ/rasa

https://github.com/RasaHQ/rasa

 Deliverable D2.3 “Reference Architecture”

29

communication between the components residing in the client and the server will be done through

REST-APIs.

The main goal of the AI-based Assistant is to guide the end-user through various aspects and tasks

for managing his identity. The AI-based Assistant Backend will be integrated into the IDC, which

will include all structures, scripts, and machine learning models. The machine learning models

will be specifically trained and tailored to the intricacies and special requirements of a single,

highly structured type of question-answering problem, to achieve high accuracy in the produced

answers. In addition, the assistant will assist the user in preserving their privacy while accessing

services on the web and, at the same time, will enable them to identify possible risks of de-

anonymization. Moreover, the assistant will interact with the user through verbal cues and will be

able to get feedback through web and mobile applications.

Rasa has two components, the NLU and the dialog tracker (called CORE). The NLU (natural

language understanding) is in charge of understanding what the user writes, it first classifies the

input sentence into a set of possible user's intents and also extracts the entities from the sentence,

like names, numbers, locations, etc. That information is then passed to the CORE, which is in

charge of keeping track of the conversation and deciding what action to take or what response to

give to the user.

The NLU is trained with sample sentences annotating the intent and the entities, and the CORE is

trained providing sample conversations called stories, so that the agent learns the correct

correspondence between user input and the action to take. As an example, training an FAQ would

be as simple as classifying the input as any of the possible questions and then providing simple

sample conversations to the core composed of pairs of question-answer.

The training and deployment of both NLU/Core components require a reasonable amount of effort

as they can expose a REST API, POSTing the user input as a sentence and having as a response

all the necessary suggested actions that the user should take in JSON format. For both components

there are several model architectures to train, with simple sklearn-based or with deep neural model

like the state-of-the-art BERT[6] for the NLU component. At the back-end, a database will also be

used to store all the related information and to enable the implementation of the AIAS in terms of

the rules and the correlations needed. This database might be also implemented in the existing IDC

database.

3.2.7 Tor Network

 To be able to anonymize the user’s IP address and all of the information associated with it, a Tor

network library will be integrated in the User Device. The user will have the ability to access

Service Providers by using specific identity attributes and verify his cryptographic credentials to

the Identity Provider anonymously through the Tor Network. It will be an extra level of security

by encapsulating the cryptographic technologies (Idemix), that’s why in this scenario

communication between the User Device and the Service Provider and the Identity Provider

Verifier should go through Tor network.

 Deliverable D2.3 “Reference Architecture”

30

3.2.8 Blockchain

The Identity Consolidator will also serve as a node at the blockchain network. The interactions

between the IDC and the users regarding the creation/modification of identity attributes access

control policies will be logged, as well as the corresponding communication with the SPs.

Blockchain offers advantages like immutability, transparency to the network members and

accountability. On top of that, the identity attributes are going to be stored on the blockchain,

offering an easy and fast way to ensure that the information that has been communicated to the SP

has not been tampered with or subjected to a man-in-the-middle type of attack. That way, disputes

can be swiftly resolved or completely avoided, and security is enhanced ensuring privacy and

smooth operation of the predefined processes.

3.2.9 Identity Repository and Third-Party API

The identity attribute values are stored in the Identity Repository, which essentially is a database.

It resides on the IDC and the data obtained by the identity providers collaborating with the IDC is

stored there. The identity providers may come in the form of user input, or online social media

(e.g., Facebook, IEEE membership, etc.), which naturally may result in different data formats. The

identity repository processes the data and homogenizes it in a default format. More specifically,

the identity repository will store information in a categorized manner. A table will be used in order

to log the user’s primary information, like name, age, etc. Which will be accompanied by a unique

key assigned to each one of them. Secondary information will be stored in another table; this data

will be corelated with the corresponding user by utilizing the unique key. Secondary information

is defined as data related to contact information, media, positions, etc. and may have stemmed by

identity providers or user input.

The following figure represents this model:

 Deliverable D2.3 “Reference Architecture”

31

Figure 9. Storage Model

The IDC needs to be able to communicate with both the IdPs and the SPs in order to exchange

information, along with the user device. In order to achieve that goal, we utilize a third-party API

that makes it possible for the SPs to transfer information to and from the IDC, and the IDC can

issue the required cryptographic credentials at the user device.

3.3 Identity Provider (IdP)

Identity Providers

Web/Mobile Application

QR

Client

FIDO2
 Client

Federated

Logins

Credential
Management

FIDO 2
Authenticators

Idemix

Identity Attributes Store

Figure 10. User’s Device Protocol Stack View

Since INCOGNITO is a platform whose main interest is user security and privacy, Identity

Providers play a major role in authentication. An Identity Provider is a trusted system that

authenticates users on behalf of another web resource, such as Service Providers. The functioning

 Deliverable D2.3 “Reference Architecture”

32

principles relies on federated authentication which is an agreement between multiple organizations

to use the same identification data to access different applications or services. In this case, an

Identity Provider is an authenticating party where the users have their credentials for login. A third

party (a Service Provider in INCOGNITO) trusts the authenticating party. Therefore, whenever a

user wants to access the services provided by a Service Provider, it authenticates to an Identity

Provider which then issues a token which will be used by the user to prove to a third party that he

is who he claims to be.

Considering the leak of passwords and sensitive user information that took place in the last years

as a result of data breaches and other security attacks that happened to the service providers’ user

credential databases, using an Identity Provider adds multiple layers of security such as multi-

factor authentication or strong encryption. Using an Identity Provider also spares the user of

creating and remembering multiple passwords and the service providers of storing and protecting

user information.

In INCOGNITO, there are two modules that communicate with an Identity Provider, each with

different roles but both use the same federated login approach to communication. The Service

Provider makes use of the authentication information stored at the Identity Provider in order to

avoid storing data about its users. Identity Providers holds identity attributes about its users and it

also enables the cryptographic credential creation directly on the user’s device through the

credential management module which makes use of the identity attributes and follows the

FiWARE specification which enables the Idemix cryptographic credential stack in charge of

credential generation. The credential management module is also responsible for credential

verification which results in trusted identity attributes which will be transferred to the Service

Providers by means of the OpenID specification and to the Identity Consolidator to be stored and

backed up in case of an Identity Provider failure.

The Identity Providers rely on two key servers. The first one – FIDO 2.0 server – represents the

way through which users register and authenticate at the Identity Providers. The second one – QR

authentication server – serves the purpose of allowing the user to access a service from another

device or browser, if it is already using that service on their user device. A QR Client existent on

the user’s device will enable the user to scan a QR code and send it to the QR Authentication server

for verification. In this way, the Identity Provider will be able to authenticate the user and give

access to resources from a different device than the one he scans the QR Code from.

3.3.1 FIDO2 Server

The FIDO2 server is the component on which the IdP relies for registration and authentication.

The Identity Provider has to deploy the FIDO2 server on their premises so that it can make use of

its services whenever a user needs to access a Service Provider.

Before using the federated authentication enabled by the Identity Provider, a user has to be

registered with it. It is now when the user has to register at the Identity Provider through the FIDO2

server’s registration protocol. The registration takes place only once and the following interactions

between a user and the Identity Provider is mediated by the FIDO2 server’s authentication

 Deliverable D2.3 “Reference Architecture”

33

protocol. This authentication enables the user to further access the FiWARE protocol stack, which

is an abstraction layer above the Idemix protocol so that new cryptographic credentials would be

issued on the user’s device and then would be transferred to the Identity Provider. The

cryptographic credentials will get to the Service Provider in order to allow the user access to its

services.

For the FIDO Server, the gateSAFE fulfills a double role. Firstly, it offers TLS encryption for a

secure communication. Secondly, it grants a routing function for redirecting the communication

to the corresponding server: the FIDO 2 Server or the Identity Provider. The routing takes place

based on the URL that the two application servers are deployed on, as seen in the diagram below.

Figure 11. Routing through gateSAFE

3.3.2 QR Authentication Server

The QR Authentication Server enables the identity transfer from a mobile device to a desktop,

therefore the user can access the protected resources at a Service Provider from multiple devices.

QR Authentication works on the principle of federation, the Service Provider assigning the

authentication responsibility to a QR Server which will complete the process according to a custom

security policy. The authentication process starts when a user opens the portal from a web browser

from a desktop device. At that point, the Service Provider generates a token associated with the

current user session open at the user’s mobile device and sends an authentication request at the QR

Authenticator module. The Service Provider request must contain a policy which will describe the

security parameters according to which the QR Server will perform the authentication process. As

 Deliverable D2.3 “Reference Architecture”

34

soon as the authentication request reached the QR Authenticator, the latter checks that the

authentication request’s origin is reliable and generates an authentication message encoded in a

QR code that will be displayed in the browser and scanned by the mobile application in order to

allow the access to the running session from a desktop. The mobile application decodes the QR

code in order to start an authentication session with the QR Authenticator. The application can

authenticate at the QR Server by different protocols such as FIDO or TLS. The QR Authenticator

verifies the authentication messages received from the mobile application and notifies the Service

Provider about the status of the authentication. If the authentication is successful, the user starts an

authenticated session from the browser and is redirected to the Service Provider. The steps of the

process described above can be seen in the diagram below:

Figure 12. QR Authentication

Since the authentication can take place through the means of protocols as FIDO or TLS, the

authentication message format is flexible and can be extended to be compatible with complex

protocols as well. Each QR code generation carried out by the QR Authenticator is a unique one

in order to avoid the duplicate authentication data. The generated code has a size limit so that the

codes that are presented to the QR Device Client could be processed fast without causing QR code

expiration. In order to enable the transmission of the QR code to take place safely, the

communication happens through a TLS channel which binds the QR Server and the QR Web

Client. Hence the QR Authenticator trusts the source of the QR code and allows the QR Device

Client parse valid information and send authentication data to the QR Sever. In order to avoid

attacks, a TLS channel also binds the User Device with the QR server and the Web Client with the

Service Provider.

 Deliverable D2.3 “Reference Architecture”

35

3.4 Service Provider (SP)

Service Provider

Web/ Mobile Application

Federated Logins

Access Control Policy Reasoning Tool

Machine Learning and Data Mining Techniques
(e.g., Risk Quantification)

Service Provider-specific
Business Logic

Figure 13 Service Providers Protocol Stack View

Service Providers are already available in the market and used by the consumers. In order achieve

wide adaptation of the INCOGNITO platform by multiple Service Providers, we put effort into

applying just essential changes on the SPs, that will be easier adopted with few modifications. SPs

often have certain requirements that need to be met by the users in order to utilize their services.

As defined in ReCRED, the XACML-based Access Control Policy Reasoning Tool is used by the

Service Providers in order to define access control policies regarding the users’ identity attributes

that are required in order to gain access to their services. These attributes are acquired from the

Identity Consolidator, as users do not share directly information regarding their identity with the

Service Providers. The OpenID Connect protocol combined with a cryptographic credentials stack,

such as Idemix, are utilized for this purpose and deliver the attribute(s) needed by the Service

provider in order to grant access to the user.

The INCOGNITO will also incorporate a blockchain solution in order to boost its privacy and

security. The Service Providers will be part of that network, running an endpoint and participating

at the submission of transactions on the blockchain, while they will be held accountable for their

actions throughout the network’s lifecycle. More details about the blockchain integration are

presented in Section 4.4.

4 Protocols and Technologies

4.1 FIDO 2

4.1.1 Overview

INCOGNITO integrates FIDO2 Protocol Specifications mainly because it offers a high protection

against cyber-attacks (e.g., MITM, phishing) while also offering password less authentication for

the users. This makes it a secure protocol and an easy-to-use solution, removing the overhead of

memorizing passwords for all the accounts one has or for the data breach that could happen when

using the same password for all them.

FIDO2 Protocol Specification is an upgrade to the already existing FIDO Specifications, namely

FIDO UAF and FIDO U2F. In general guidelines, all three specifications of FIDO work on the

same basic principle:

 Deliverable D2.3 “Reference Architecture”

36

• When a user tries to authenticate with an online service, the latter one sends a request to

the user device to ask for an attestation of authenticity.

• The user is prompted to choose and available authenticator that should be registered with

the online service.

• The registration starts when the user unlocks the chosen authenticator through a user to

device authentication such as entering a PIN or providing a fingerprint.

• Next, the authenticator generates a pair of asymmetric keys which is uniquely shared

between the authenticator, user device and online service, therefore being associated to

only one user account. The private key never leaves the authenticator, while the public key

is sent to the online service where it will be stored in a database on the server side.

After the registration of the asymmetric key pair, every access to the user account will be allowed

when a signed challenge will be verified at the server using the public key associated with the

respective account.

Despite relying on the same functional principle, each one of the specifications has a different

purpose.

FIDO UAF is oriented towards offering password less authentication. It relies on registering a

user’s device with an online service and it can offer password less access to the user’s account

only from the registered device. On this purpose, the user device has a FIDO UAF stack installed

on it and it also has an embedded platform authenticator. This authenticator is registered with the

online service and whenever the user wants to access his account, he will unlock the authenticator

through a gesture on the user device and the authentication process will be verified at the server

side.

FIDO U2F is oriented towards increasing security through a second-factor authentication. While

the old authentication method with username and/or password is still available, the online service

will also request the user to present a second factor device such as a FIDO Security Key. Although

a password is still involved, it can be reduced to a 4-digit PIN since the second factor device has

the function to deliver a stronger authentication method. The registration though, involves

registering the roaming authenticator since the beginning just as it is done in the FIDO UAF

specification, namely by unlocking the second factor device in order to register the public key with

the online service.

FIDO2 is up to a point, a unification between FIDO UAF and FIDO U2F, but it also brings a new

feature. FIDO2 authentication supports password-less authentication, second-factor, but it also

increases security by adding multi-factor authentication on top of these authentication methods.

FIDO2’s main importance is that it allows a user to authenticate to online services on mobile

devices, as well as on desktop environments. Registering multiple authenticators with a single

account, as much as adding FIDO Authentication support inside web browsers through a standard

web API known as WebAuthn have made this feature possible. Since it has been said that FIDO2

comprises both FIDO UAF and U2F, it is worth mentioning that it supports platform authenticators

and roaming authenticators at the same time. This is a very useful feature when trying to recover

 Deliverable D2.3 “Reference Architecture”

37

someone’s account since one can register with the online service mobile devices, as well as FIDO

Security Keys or wearables.

So that all the new features brought by FIDO2 may be supported, it is necessary to split it into two

main components:

• WebAuthn Standard which is responsible for the web authentication at the server side and

is mainly useful for using multiple devices with a single account.

• CTAP2 Standard which is the new replacement for the ASM (Authenticator Specific

Module) used in FIDO UAF in order to allow communication between the FIDO Client

and the platform authenticator. Since FIDO2 uses roaming authenticators as well, it is

necessary to define a standard of communication between the FIDO Client present on the

user device and the authenticator present on a different device.

4.1.2 WebAuthn

WebAuthn is a standard that was developed by FIDO9 Alliance in collaboration with World Wide

Web Consortium (W3C)10 and was declared an official web standard in March 2019. It is the main

piece in FIDO2, offering users the ability to login to web applications using passwordless

authentication.

It introduces Web Authentication API as a browser built-in piece of code which adds FIDO support

to them. The standard revolves around the way the Authenticator, Client and Relying Party interact

with this web API, while conforming with the security and privacy considerations imposed by the

WebAuthn Specification.

The flow of authenticating users through web applications starts with a request sent by the Relying

Party web application to the authenticator in order to create one or more public key credentials that

should be registered with the account. The request is actually a call to the Web Authentication API

which, with the help of the user agent, will make the request reach the client device where it will

be either directed to a platform authenticator or a roaming authenticator using CTAP2 Standard.

The authenticator sends an attestation to the requesting Relying Party, offering cryptographic proof

of their properties, though not before they are unlocked by a user action such as fingerprint or PIN.

4.1.2.1 Web Authentication API

Web Authentication API is a script that offers a way of creating and using public key credentials

with a browser. It sends requests to the authenticator and receives the responses with the help of

the user agent on the client platform, but it never actually accesses the information since it is sent

and received as objects.

The security of the communication that takes places through this API is maintained by the

authenticator and the user client working together. The authenticator always makes sure that the

9 https://fidoalliance.org/how-fido-works/
10 https://www.w3.org/TR/webauthn/

https://fidoalliance.org/how-fido-works/
https://www.w3.org/TR/webauthn/

 Deliverable D2.3 “Reference Architecture”

38

credentials are sent to the origin that requested them by signing and integrating them in all the

responses, be it the attestation object created at the registration moment, or any other assertion

objects created whenever the user authenticates. Regarding user privacy, the authenticator makes

sure that each created credential is associated with a certain Relying Party ID (RP ID). Whenever

it sends a response, it first has to receive from the client the requesting RP ID in order to check

there are actual credentials that match the requester and then send the response to the Relying

Party. In this way, the authenticator makes sure that credentials are only used by the Relying Party

that requested their creation without disclosing to a different Relying Party, other existent user

accounts and their origins.

There are two main interfaces in Web Authentication API serving the creation of public key

credentials, as well as their transport to the requesting Relying Party:

• PublicKeyCredential Interface which inherits from Credential interface and contains the

attributes that must be returned to the caller during registration and authentication to a

Relying Party.

• AuthenticatorResponse Interface which is used by the authenticator to response to a

Relying Party request. It contains a JSON serialized data received from the client which

receives it, for its part, from a Relying Party sender.

4.1.2.2 WebAuthn Authenticator Model

WebAuthn Authenticator Model describes and abstract model of interaction of the Web

Authentication API with the authenticator. It is not an already made implementation. This is

something each client platform implements in its own way, but the implementation should offer

the same interaction and result when used with the Web Authentication API.

The WebAuthn Authenticator Model describes data encoding and logical operations exposed to

the client and the Relying Party. It does not impose a certain protocol of communication between

a roaming authenticator and a client device such as USB or NFC.

Relying Parties can choose the type of the authenticator to register with through calling certain

methods from Web Authentication API, which will be propagated to the methods described by the

WebAuthn Authenticator model and will be sent in the end to the authenticator itself. The

authenticator’s main function is to provide signatures for the WebAuthn. The two purposes for

which a signature is needed are:

• To create an attestation signature which is needed to prove to a Relying Party the

properties of the signing authenticator. It is produced when a registration takes places,

therefore when a new public key credential is created.

• To create an assertion signature which is needed to prove to a Relying Party that the

user who initially allowed the creation of a public key credential is the one who also

accepted the authentication or transaction in progress for which the assertion is being

created.

The main abstract operations to interact with an authenticator are:

• authenticatorMakeCredential operation invoked when a new public key credential

request is sent from the Relying Party.

 Deliverable D2.3 “Reference Architecture”

39

• authenticatorGetAssertion operation invoked when an authentication or transaction is

taking place. The Relying Party sends a request to the authenticator to get an assertion in

order to be able to allow the user’s access to the account.

• authenticatorCancel operation invoked by the client in an authenticator session. It has the

effect of terminating any authenticatorMakeCredential or authenticatorGetAssertion

operation currently in progress in that authenticator session.

4.1.2.3 WebAuthn Relying Party Operation

The Relying Party is the entity that takes care of creating objects that will be sent to an

authenticator in order to register or authenticate a user. Upon registration, the Relying Party’s

script receives a PublicKeyCredential object containing an AuthenticatorAttestationResponse from

the authenticator. The content of these objects is delivered to the Relying Party’s server where the

public key credential is stored and associated with a user’s account.

Figure 14. FIDO Registration

Upon authentication, the Relying Party’s script receives a PublicKeyCredential object containing

an AuthenticatorAssertionResponse from the authenticator. The content of these objects is

delivered to the Relying Party’s server where the signed challenged received from the authenticator

is verified with the public key credential stored at the Relying Party's server.

 Deliverable D2.3 “Reference Architecture”

40

Figure 15. FIDO Authentication

4.1.3 CTAP2

Client to Authenticator Protocol 2 (CTAP2)11 is an application layer protocol meant to create a

communication between a roaming authenticator and client platform. The protocol works

according to the following steps:

• The client platform creates a connection with a roaming authenticator.

• The client platform calls the authenticatorGetInfo command to obtain information about

the capabilities of the authenticator.

• The client platform sends a command to the authenticator if it is able to support it.

• The authenticator replies with the requested data or an error.

CTAP2 Protocol is composed of three main parts:

• Authenticator API which is an abstract API that describes the way a client platform

interacts with the authenticator. The operations are just like API calls, accepting

parameters and returning messages as output or errors. The main operations are similar to

the ones described before in the WebAuthn Authenticator Model, since they convey the

same data that has to reach the authenticator, just being discussed from another entity’s

perspective.

• Message Encoding which is the encoding format used by a client platform before calling

an API method. The authenticator will respond with a message encoding in the same

format. The encoding used is CTAP2 canonical CBOR which represents a light-weight

11 https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html

https://fidoalliance.org/specs/fido-v2.0-ps-20190130/fido-client-to-authenticator-protocol-v2.0-ps-20190130.html

 Deliverable D2.3 “Reference Architecture”

41

form of encoding. It is necessary to reduce the complexity of the messages since transport

mediums can be bandwidth-constrained such as BLE. The JSON serialization used in the

previous FIDO Specification is too heavy-weight for the new way of transporting

messages to and from roaming authenticators.

• Transport-specific Binding which is the format of communication specific to a certain

transport protocol such as USB, NFC, BLE used to convey information between the

roaming authenticator and the client platform.

4.1.4 FIDO2 integration with INCOGNITO Architecture

INCOGNITO integrates FIDO2 Specification in its protocol stack, along with other specifications

such as Privacy Attribute Based Access Control in order to allow the user a passwordless, multi-

device authentication while keeping its privacy through untraceability and unlinkability.

The components of the FIDO2 stack are distributed among every part taking part in the

authentication: on the online services side, on the user device, as well as on other devices able to

act as an authenticator such as wearables.

1. FIDO2 Server is implemented in both Identity Consolidator and Identity Provider. It is

responsible for:

o interacting with the Web Authentication API script supported by the browsers in

order to send request to the client on the user device.

o verifying the validity of the FIDO2 messages received from the client.

o managing user accounts and their associations with the public key credentials

created by the authenticator

2. FIDO2 Client runs on the user device and is in charge of the following operations:

o communicating FIDO2 messages to and from the Relying Party. It interfaces with

a user agent that can be a browser plugin which should implement the specific

Web Authentication API specific to FIDO2 Protocol. The FIDO2 Server running

at the Relying Party sends a message to the web application running at the online

service which will redirect the message to the user agent running on the user’s

device which will forward next the messages to the user client.

o communicating with the authenticators through CTAP2 protocol which sends

messages encoded in CTAP2 canonical CBOR format.

3. Authenticator can be a platform authenticator (embedded on the user device) or a

roaming authenticator. Its functions are to:

• communicate with the client through CTAP2 protocol and interfaces with the user device

through different transport protocols such as USB, NFC, BLE.

• generate a pair of asymmetric keys which will be used to associate the authenticator with

the user’s account at the Relying Party. In order to maintain the security of the generated

 Deliverable D2.3 “Reference Architecture”

42

keys, the authenticator should run the key generation process inside a trusted execution

environment (TEE).

4.2 OAuth 2.0

OAuth 2.012 is considered to be the most widely used and adapted protocol upon which

authentication solutions are implemented. It offers interoperability among any kind of devices (e.g.

desktop applications, smartphones, IoT devices etc.) by enabling HTTP access to be granted to

applications that need corresponding resources owned by a different entity. Both OpenID connect

and UMA technologies that we are going to utilize in order to implement the INCOGNITO

platform are based on OAuth 2.0; the authorization layer provided clearly differentiates clients

from resource owners. In order for a client to access resources that belong to a different owner and

reside on a resource server, new credentials are issued – usually and authentication token – for the

client with the owner’s consent. This token is utilized by the client in order to access the resources

that reside on the resource server. Below we will analyze how this concept applies specifically for

the OpenID Connect and UMA solutions.

4.2.1 OpenID Connect
OIDC is defined as an identity layer that has been implemented on top of the OAuth 2.0 protocol.

It makes it possible for clients to verify the corresponding identity of a user by utilizing the

authentication procedure that takes place on an authorization server. In essence, OIDC concerns

the user's authentication compared to OAuth 2.0 which deals with resource access and sharing.

When utilizing OIDC protocol, there are three options that the authentication procedure may

follow, their main difference being the way the ID and Access token are passed to the client:

• Authorization code flow: This flow is widely used by common web applications and

programs executed on smartphones and IoT devices. It redirects the user to a login page

where authentication and consent procedures take place. After that step, the ID and Access

tokens are issued.

• Implicit flow: Applications that are executed on the browser are primarily utilizing this

flow, as the absence of a backend requires that an ID token is sent to the client without the

procedure described at the authorization code flow taking place.

As it is mentioned before, the OIDC reuses the OAuth 2.0 protocol and parameters and extends it

to introduce an Identity Layer through the following additions:

• Along with the access token, an ID token is returned, which is basically a JSON Web Token

with identity claims (user information).

• An endpoint regarding user information is used, which returns identity attributes that

correspond to an access token.

4.2.1.1 Authorization Code Flow

Web applications are executed on servers that provide backend operations. The Authorization

Code Flow is used in that case, which essentially means that the application trades an Authorization

Code for an Access Token.

12 https://oauth.net/2/

https://oauth.net/2/

 Deliverable D2.3 “Reference Architecture”

43

Figure 16. Authorization code flow

The above figure illustrates the Authorization Code Flow and the whole process is described

below:

1. The user tries to login at the web application.

2. The web application passes on the request to the OpenID Provider.

3. The OpenID Provider redirects the user to the corresponding Authorization Server to login

and give the corresponding consent.

4. The user utilizes his/her credentials to authenticate and grant permissions to the web

application.

5. The OpenID Provider issues a one-time use authorization code.

6. This token is processed by the OpenID Provider’s corresponding endpoint along with the

application's Client ID.

7. The OpenID Authorization Server performs a verification regarding the authorization code

and Client ID.

8. The OpenID Authorization Server sends back an ID and an Access Token.

9. Now the web application can utilize the Access Token to communicate with an API to

access user identity attributes.

10. The API sends back the requested attributes.

The exchange of the above messages is done with HTTPS or HTTP protocol, with GET and POST

methods.

4.2.1.2 Implicit Flow
Instead of the Authorization Code Flow, OpenID Connect can be realized through the Implicit

Flow which is mainly addressed to Public Clients. This flow does not make use of an Authorization

Code, just an ID Token that is traded at the corresponding endpoint. This flow is not recommended

for big scale deployments, but it is very useful in cases where the application requires just the ID

Token to authenticate the user.

The figure below shows the Implicit flow procedure.

 Deliverable D2.3 “Reference Architecture”

44

Figure 17. Implicit flow

1. The user attempts to login at the web application.

2. The user is guided to the OpenID Authorization Server, providing a “response_type”

parameter that indicates the ID token’s format that the user requires.

3. The OpenID Provider redirects the user to the corresponding Authorization Server to login

and give the corresponding consent.

4. The user utilizes his/her credentials to authenticate and grant permissions to the web

application.

5. The user is provided with an ID Token.

The above requests and responses are made in the same manner as with the Authorization Code

Flow. The exchange of the above messages is done with HTTPS or HTTP protocol, with GET and

POST methods.

4.2.2 User-Managed Access (UMA)

User-managed access (UMA) is a federated authorization standard protocol built on top of OAuth.

As described by the creators, the purpose of the protocol specifications is to “enable a resource

owner to control the authorization of data sharing and other protected-resource access made

between online services on the owner’s behalf or with the owner’s authorization by an autonomous

requesting party”.

UMA defines 2 sets of specifications:

• UMA 2.0 Grant for OAuth 2.0 Authorization: specifies how a client should use a

permission ticket to request OAuth access token in order to gain access to a protected

resource.

• Federated Authorization for UMA 2.0: defines a means for a UMA-enabled authorization

server and resource server to be federated in a secure and authorized resource owner

context.

 Deliverable D2.3 “Reference Architecture”

45

Figure 18. UMA general flow

UMA extends the definitions of entities defined by the OAuth protocol in order to accommodate

a new role, the requesting party. As a result, the following roles are defined:

• Resource owner: an entity which can grant access to the protected resources.

• Requesting party: an entity, natural or legal person, which seeks access to a protected

resource. This entity may or may not be the same party as the resource owner.

• Client: an entity capable of requesting access to protected resources with the acceptance of

the resource owner, in the name of the requesting party.

• Resource server: an entity capable of granting access to protected resources in the resource

owner’s behalf

• Authorization server: an entity that protects and grants access to the protected resources

hosted on the authorization server on the resource owner’s behalf

4.2.2.1 UMA Grant

The UMA grant13 defines an extension OAuth 2.0 grant that enhances OAuth capabilities in the

following ways:

• The resource owner authorizes protected resource access to clients used by entities that are

in a requesting party role. This enables party-to-party authorization, rather than

authorization of application access alone.

• The authorization server and resource server interact with the client and requesting party

in a way that is asynchronous with respect to resource owner interactions. This lets a

13 https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html

 Deliverable D2.3 “Reference Architecture”

46

resource owner configure an authorization server with authorization grant rules (policy

conditions) at will, rather than authorizing access token issuance synchronously just after

authenticating.

The authorization flow of the UMA Grant starts with an initial resource access request made by

the client to the resource server with and invalid or inexistent access token. The resource server

gets on behalf of the client, a permission ticket from the authorization server. This will serve the

client to access the authorization server in order to obtain a Requesting Party Token (RPT) to

access the resources it needs. RPT is an OAuth access token whose issuance takes places as a

consequence of claims gathering and an authorization assessment at the authorization server.

The authorization server has a predefined endpoint where a client can find a discovery document

mentioned in the UMA specification as Authentication Server Metadata. It is here where the client

can find all the endpoints and other kind of metadata exposed by the server.

4.2.2.2 Federated Authorization

As mentioned in the Overview section, the Federated Authorization14 is focusing on the interaction

between the resource server and the authorization server. This communication is mediated by a

Protection API exposed by the authorization server which provides the following three endpoints:

1. Resource Registration Endpoint

2. Permission Endpoint

3. Token Introspection Endpoint

Before interacting with the Protection API, a resource server needs to obtain OAuth client

credentials from the authorization server. These credentials come as an access token – namely

Protection API Access Token (PAT).

1. Resource Registration Endpoint

Since a resource server has obtained a PAT, it is now allowed to put resources under the protection

of the authorization server. The resources are registered through the Resource Registration

Endpoint which supports five registration options:

• Create resource description - registers a new resource to the authorization server using the

POST method.

• Read resource description - reads a previously registered resource description using the

GET method.

• Update resource description - updates a registered resource description, by completely

replacing the previous resource description, using the PUT method.

• Delete resource description - deregisters a previously registered resource description using

the DELETE method.

• List resource descriptions - lists all previously registered resource identifiers for this

resource owner using the GET method.

14 https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-federated-authz-2.0.html

https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-federated-authz-2.0.html

 Deliverable D2.3 “Reference Architecture”

47

2. Permission Endpoint

The Permission Endpoint is where the resource server accesses the authorization server in order to

get a permission on behalf of a client which requests access to a resource. When the client reaches

the resource server without a RPT, the resource server obtains a permission for the client which

will be used by the latter to get a RPT from the authorization server.

3. Token Introspection Endpoint

The Token Introspection Endpoint is a checkpoint for the authenticity and validity of a Requesting

Party Token. When a client finally obtains a RPT and presents it to the resource server in order to

get access to a resource, first the resource server checks if the RPT is valid at the Token

Introspection Endpoint and then the flow of UMA finally ends in an access or a denied permission

to a resource.

4.2.2.3 UMA Flow Diagram

Figure 19. UMA Flow

The steps shown in the above diagram form the whole UMA flow, from the resource request to

the resource access and are detailed in the following lines:

1. The resource server puts the resources under the authorization server’s protection.

2. The client acting on behalf of a requesting party, makes an access request to the protected

resource without an RPT or with an invalid one.

 Deliverable D2.3 “Reference Architecture”

48

3. The resource server requests permissions (resource identifiers and scopes associated with

the requested resource) from the authorization server.

4. The authorization server answers with a permission ticket.

5. The resource server returns to the client the URI of the authorization server and permission

ticket with which it can make a request for a RPT.

6. The client makes a request for an access token at the authorization server using the

permission ticket and additional claims.

7. After an assessment algorithm, the authorization server issues a RPT.

8. The client makes a resource request, but this time with a valid RPT.

9. The resource server introspects the RPT at the authorization serve in order to assess its

validity.

10. The authorization returns a token introspection response.

11. If the response is positive, the resource server gives the client access to the requested

resource.

4.2.2.4 UMA Implementations

User Managed Access is a project of the global consortium Kantara Initiative whose mission is to

bridge the identity community with actions that protect users’ privacy and security in order to

create more trustworthy networks. On their official website, the consortium lists all the known

UMA implementations. After a thorough research on every project found in there, three main

options stood out due mostly to their open source and complex nature. They are presented in the

following three subdivisions.

1. Gluu

Gluu15 Server is a project run by the Gluu Federation and it is an open-source software (FOSS)

solution for identity and access management (IAM). It is a container distribution which

incorporates different open-source projects that together come to create a complex IAM solution

that covers different use cases such as:

• Single sign-on (SSO)

• Mobile authentication

• API access management

• Two-factor authentication (2FA)

• Customer identity and access management (CIAM)

• Identity federation

These uses cases come to be realized through the implementations of different web standards for

authentication, authorization, federated identity and identity management:

15 https://gluu.org/docs/gluu-server/

https://gluu.org/docs/gluu-server/

 Deliverable D2.3 “Reference Architecture”

49

• OAuth 2.0

• OpenID Connect

• User Managed Access 2.0 (UMA)

• SAML 2.0

• System for Cross-domain Identity Management (SCIM)

• FIDO Universal 2nd Factor (U2F)

• FIDO 2.0 / WebAuthn

• Lightweight Directory Access Protocol (LDAP)

• Remote Authentication Dial-In User Service (RADIUS)

Gluu Server is supported on multiple operation systems such as Docker, Ubuntu 16 and 18,

CentOS 7.x but it is not supported on Windows.

Despite the fact that Gluu is a complex identity and management solution, for the INCOGNITO

project it is of interest only the User Managed Access implementation. There are three main

components that create the whole UMA flow:

• Gluu Server

• Gluu Gateway

Gluu Server acts as an authorization server for UMA. It implements the two main components:

UMA Grant and Federated Authorization by exposing endpoints, keeping policies for

authorization and implementing an assessment algorithm in order to decide whether a client is or

is not suitable for accessing a certain resource. But in order for this whole authorization flow to

happen, it is first necessary to bridge the resource servers, authorization server and the clients

together through authentication. Gluu server offers the authorization, but in order to be able to start

this flow, a client needs first to be authenticated at the server as well as a resource server needs to

be authenticated in order to put its resources under the authorization server’s protection. And here

is where Gluu brings into the equation another module – namely Gluu Gateway. It offers the

possibility to authenticate through UMA bearer tokens or through OAuth 2.0 access tokens. This

feature is offered by the Gluu Gateway plugins and by the oxd Server which represents a

middleware that enables communication between the authorization server and a client.

 Deliverable D2.3 “Reference Architecture”

50

2. WSO2

WSO216 Identity Server is fully open source and is released under Apache Software License

Version 2.0. WSO2 Identity Server provides, just as Gluu, an identity and access management

solution. It is built on top of WSO2 Carbon which is a middleware platform whose main role is to

allow developers to easily manage business processes and develop services. The Identity Server

offers the users to deploy it on premise servers, private cloud or public cloud without configuration

changes.

The WSO2 Identity Server is supported on multiple operating systems such as Windows, Ubuntu,

Docker. It offers the following list of services:

• User stores and directories

• Authentication of users

• Authorization of users

• Single sign-on

• Provisioning

• Access delegation

• Password reset

• Self-registration

• Account locking

WSO2 Identity Server supports UMA 2.0 protocol and acts as the authorization server, enabling

resources management and access control to them. The flow of UMA in WSO2 can be seen in

the imagine below:

Figure 20. UMA Architecture in WSO2 Server

16 https://is.docs.wso2.com/en/latest/

https://is.docs.wso2.com/en/latest/

 Deliverable D2.3 “Reference Architecture”

51

3. KeyCloak

KeyCloak17 is a single sign on solution for web apps and RESTful web services led by RedHat. It

is supported on Docker, Kubernetes, but it also comes as a standalone project ready to be run on

Windows or Linux operating systems. It runs as a different server on your network and applications

are secured by it. A browser application redirects a user from the application to the KeyCloak

authentication server where the user enters his credentials. In this way, the user is isolated from

the application and the application does not have access to the user’s credentials.

KeyCloak source code is bundled with the WildFly application server, but it also offers client

adapters for other web servers such as Tomcat or Jetty. In order to manage different groups of

applications and users, KeyCloak introduces the notion of realm which is equivalent of a tenant.

There is a default realm called master which is meant to manage the KeyCloak. For any other

application, a different realm should be created.

Some of the features introduced by KeyCloak are mentioned below:

• Single-Sign On and Single-Sign Out for browser applications

• OpenID Connect support

• OAuth 2.0 support

• SAML support

• Identity Brokering - Authenticate with external OpenID Connect or SAML Identity

Providers

• Social Login - Enable login with Google, GitHub, Facebook, Twitter, and other social

networks

• User Federation - Sync users from LDAP and Active Directory servers

• Kerberos bridge - Automatically authenticate users that are logged-in to a Kerberos

server

• Admin Console for central management of users, roles, role mappings, clients and

configuration

• Account Management console that allows users to centrally manage their account

4. Gluu vs. WSO2 vs. Keycloak

Since all the solutions mentioned above are complex, in order to take a decision for the most

suitable alternative for the INCOGNITO project, a list of requirements was drew up. In this way,

a parallel between the three UMA implementations would create a big picture of what each

solution can offer.

17 https://www.keycloak.org/documentation

https://www.keycloak.org/documentation

 Deliverable D2.3 “Reference Architecture”

52

 Gluu WSO2 Keycloak

Installation /

Configuration

Complex setup and it

requires many

resources

Comes as an

executable ready to

install

Comes as an

executable ready to

install

User Interface Graphic User

Interface but it is a bit

unclear

Graphic User

Interface easy to use

and understand

Graphic User

Interface easy to use

and understand

Supported

Platforms

Docker, Linux

Not supported on

Windows

Docker, Linux,

Windows

Docker, Linux,

Windows

Architecture Comes in many

modules that can be

installed separately

One executable

One executable

Middleware Apache HTTPD /

Jetty

Runs on its own

WSO2 Carbon

middleware which is

based on Tomcat

Bundled with

WildFly/ JBoss

Application Server

but it also offers client

adapters for Tomcat /

Jetty and more and it

can be configured to

run on each of them,

but the documentation

does not offer support

in this direction

OpenJDK support No Yes Yes

Admin UI Yes Yes Yes

Open source Yes Yes, but it is not clear

if the latest security

patches are included

in the binaries on their

site. It can be

packaged from the

source code, but it is

still unclear if the

updates are public or

not.

Yes

Development

activity

Active development Active development,

new release in 2020

Active development,

new release in 2020,

often pull requests

that get accepted

 Deliverable D2.3 “Reference Architecture”

53

Documentation Detailed.

Very few details in

the developer Guide.

Detailed.

Very few details in

the Developer Guide.

Very detailed, there

are many action

described step by step

such as adding

certificates, adding

policies, securing

apps etc.

Detailed Developer

Guide that approaches

many scenarios

The server source

code is explained in

Java docs.

Quick starts No Yes, but is seems to

come as binaries,

there is no access to

the implementation.

All the integration

with the authorization

server is described

from the point of view

of the web interface.

There is no quick start

that describes UMA

flow.

It offers many quick

starts whose source

code can be found on

Github. These are

small applications

that can be integrated

with KeyCloak. They

offer a small

application that

follows UMA flow.

The source code

offers a way to

understand how to

integrate applications

with the server and

how to create and

deploy policies at the

authorization server.
Table 1. Comparison between open-source Identity Access and Consent Management solutions

Considering all the details presented in the above table, Keycloak seems to be the best solution to

suit the needs of the INCOGNITO project. But there are also a few aspects to be discussed. Since

KeyCloak is bundled with WildFly Application Server which is mainly the new name of the old

JBoss, it is necessary to mention that WildFly is a project in active development. There is an active

community for developers, forums and new releases – the last version was in May 2020. Creating

policies is based upon a very simple format and deploying them on the server is made through a

simple command from the CLI. As a downside of Keycloak, we can mention the fact that is does

not implement the Interactive Claims Gathering from the UMA Grant Specification. This endpoint

is though mentioned to be optional and it is not a necessity regarding the way INCOGNITO is

designed.

 Deliverable D2.3 “Reference Architecture”

54

4.3 Privacy Attribute-based Access Control (PABAC)

One of the main goals of INCOGNITO is to provide a Privacy-Preserving Attribute-based Access

Control (PABAC) solution through INCOGNITO’s architectural components on top of Open ID

Connect. PABAC enables Service Providers that are not aware of cryptographic credentials to

allow end-users to use already issued cryptographic credentials from various Identity Providers to

get access to their service.

To achieve this, we need a cryptographic credential issuing Identity Provider (IdP) and a verifying

ldP. Users can request the issuance of a cryptographic credential for one or more identity attributes

from the issuing ldP, which can be the Identity Consolidator (IDC) itself that runs the

cryptographic credential issuer stack. The verifying IdP acts as an Idemix verifier able to verify

cryptographic credentials while the Service Providers (SPs) continue to run the OpenID Connect

protocol. In other words, the user requests the issuance of a cryptographic credential of one or

more user identity attributes from an issuing IdP (e.g., student and over 18). When the user tries to

authenticate to an SP, he triggers a session with a cryptographic credential verifying IdP in order

for that Verifying IdP to verify the validity of the cryptographic credential. Subsequently, the

verifying IdP assures the SP that the user is a holder of a credential that proves that she is a student

and is over 18 years old. After this seamless to the user authentication procedure, the user can have

access to the SP's service/resources, knowing that his anonymity is preserved and no more than

the needed identity attributes have been revealed to that SP. Additionally, federated PABAC offers

two concepts of anonymity, namely untraceability and unlinkability. This means that no SP or IdP

can track or link any credentials to the user or vice versa. Figure presents an overview of the

PABAC components and how the cryptographic credentials verification is achieved.

 Deliverable D2.3 “Reference Architecture”

55

Figure 21. Attributed-Based Access-Control component view

4.3.1 Idemix

Internet transactions put at risk user’s privacy and security; therefore, it is necessary to include in

INCOGNITO an additional protection layer. For this purpose, an anonymous credential system is

integrated in this platform in order to allow users to access online services without disclosing their

identity. Idemix (short for identity mix) is an identity management system based on anonymous

credentials that was developed by [8]. A credential system is a system in which users can retrieve

credentials from organizations and prove ownership of these credentials. Such a system is

anonymous when transactions carried out by the same user cannot be linked; thus, providing

privacy for users. Idemix is based on assigning a user multiple pseudonyms. Each time a user

makes a transaction at a service provider, he has to prove he owns the credential associated with

that respective pseudonym without actually revealing who he really is. There are four roles that

define the flow of the Idemix protocol:

• Issuer: In INCOGNITO, the authority in charge of issuing credentials is played by the

Identity Consolidator.

 Deliverable D2.3 “Reference Architecture”

56

• Recipient: This role is assigned to the user device. After generation the credentials, the

Identity Consolidator sends them to the user device where they are stored for future

transactions.

• Prover: When a verifier asks for a proof of possession of a credential, the credential

recipient plays the role of the credential prover.

• Verifier: This can be any online service whose resources the user wants to access. In order

to get this access, the online service will verify the user’s credentials.

The following figure maps the components of the INCOGNITO project to the components of the

Idemix protocol:

Figure 22. Mapping of INCOGNITO components to the roles of the Idemix Protocol

4.3.1.1 Idemix Protocol

Idemix has two main entities which are playing the four roles mentioned in the section above.

There are users who own the credentials and prove their identity to a second entity represented by

organizations which issue and verify these credentials. The basic flow of Idemix happens as

described next: A user U can obtain a credential C from an issuing organization OI and show the

credential C to a verifier organization OV. This credential is issued under a pseudonym N at the

issuing organization; therefore, the credential is not associated with the user’s real name. Each

credential can contain attributes from which the user can choose which of them to share with the

verifier organization.

Idemix involves multiple protocols: pseudonym registration, credential issuance and credential

verification. It is required that all parties agree on public master system parameters such as the bit

 Deliverable D2.3 “Reference Architecture”

57

length of all relevant parameters as well as the groups to be used. As a consequence, a user can

choose a master secret SU which binds together all pseudonyms and credentials. Issuing and

verifier organization all have a public / private key pair used to create and validate credentials. The

issuing organization uses the private key to generate credentials, while the public key is used by

the user or a verifier organization to validate the credential.

Idemix offers one notable feature – namely unlinkability. This is based on the zero-knowledge

property of the proof a user gives to a verifier. In order to gain access to some resources, the user

shows to a verifier a generated credential together with the zero-knowledge proof. The user aims

in this way at proving to the verifier two things: that he possesses the signature generated by the

issuing organization and that he knows the master secret associated with his pseudonym. Using

this proof, the user does not even send the credentials to the verifier. Therefore, in the end the user

can show his credentials to a verifier multiple times without them becoming linkable to each other

or to a pseudonym, keeping the user anonymous to the verifier organization.

The Idemix protocol consists of three basic functionalities described in the following sections: i)

system setup, allows parties to get initialized in the Idemix system, ii) credential issuance, is the

functionality that permit a receiver to get the credential by the issuer and finally iii) credential

proving, is the functionality demanded to the verification of credentials presented by a prover to a

verifier.

4.3.1.2 System Setup

The anonymous credential system requires general parameters for credential issuing. These

parameters are split into two types: system parameters which represent bit lengths and group

parameters which define the groups that are used within the underlying cryptographic scheme. In

order to participate in the credential issuance, the two entities – issuers and receivers – must

generate parameters too.

An issuer establishes a certain format for the credential generation and in order to receive these

credentials, a receiver must agree on the format adopted by the issuer. The issuer uses its key pair

so as to generate signatures on lists of attributes. The maximum number of attributes contained in

a credential is determined by the length of the public key at the issuer and the number of reserved

attributes that are not allowed to be issued (i.e., master secret). Once a user chooses a master secret,

he is able to generate as many pseudonyms as he wants which will also be unlinkable between

them.

4.3.1.3 Credential Issuance

Credential Issuance protocol involves both the issuer organization and the receiver (the user

device). When this protocol runs, both entities agree on a signature that will represent the

 Deliverable D2.3 “Reference Architecture”

58

cryptographic component of the credential that will be owned by the recipient in the end. The zero-

knowledge proof ensures that each party is implementing the protocol correctly at any given time.

The issuing protocols works in the following way: The user U firstly contacts the issuing

organization OI and establishes a pseudonym N for the credentials yet to be generated. If the issuer

considers N an eligible pseudonym to at a credential with a certain attribute, the organization

generates the credential C by signing a statement containing the pseudonym and the respective

attribute and send the credential C to the user’s device. Now the user can show the credential to a

verifier organization in order to gain access to some resources. Therefore, the credential proving

protocol starts running.

4.3.1.4 Credential Proving

Credential Proving protocol is not as interactive as the Credential Issuance protocol. The user has

to create a proof of possession of the credential shown to the verifier. Sometimes, the verifier will

ask to see more credentials of the same user if it needs proof of multiple attributes that are stored

across different credentials. When the issuer corresponds with the verifier, a credential can be

shown only once to a verifier and at the same time a new credential is generated for the user.

The most popular Idemix implementations are using an XML credential format. The credential

structure is separated from the credential attributes values so that provers and verifiers could

transfer structural metadata without disclosing information about the content of the credential. This

format enables the verifiers to understand the content of a received credential. Credential structures

are published by the issuers and the user has to accept it if he wants to generate a credential at the

respective issuer. The credential contains the actual data corresponding to the chosen format, such

as the attributes’ values, the master secret and are issued to a certain pseudonym chosen by the

user. Besides attributes values, credentials can also have options such as one or multi-show. When

showing a credential, the user can choose which of the attributes he wants to prove something

about and what to prove about them.

 Deliverable D2.3 “Reference Architecture”

59

Figure 23. Idemix Credential Structure and Data

4.3.1.5 Attribute Format

Each attribute in a credential structure definition is described by a name, an issuance mode and a

type. The name of the attribute is unique within the credential scope and represents a label for the

attribute. The issuance mode identifies if the attributes are known to the issuer, if the issuer has a

commitment for those attributes and which attributes are hidden from the issuer. The type has four

options: string, int, date or enum. The value of an attribute inside the credential is encoded

according to its type. When creating a proof of possession of a certain credential, the user can

choose which attributes to reveal. Therefore, there are two types of attributes inside a credential:

revealed and unrevealed attributes.

Figure 24. Attribute Structure inside a Credential

 Deliverable D2.3 “Reference Architecture”

60

4.3.2 Attribute-Based Encryption – OpenABE

Sahai Waters (2004) published a system called “Fuzzy Identity-Based Encryption”, or better

known as Attribute-Based Encryption (ABE). This solution allows for multiple private keys to be

used with a single public key (hence the “fuzzy” in the title, which can be interpreted as

“approximate matching” in computer science). Furthermore, the public keys are constructed from

a list of attributes instead of an identity. Anyone who has all the attributes can read the message.

OpenABE is found as a C/C++ software library that contains numerous schemes regarding

attribute-based encryption (ABE) along with multiple cryptographic options (e.g.,

symmetric/asymmetric key encryption, digital signatures, certificates, etc.). OpenABE is a good

solution for developers that intend to implement ABE, as it provides:

1. Resistance to collisions, which means that it is near to impossible to find two different

inputs that are going to produce the same output when they are hashed.

2. Resistance to “Chosen Ciphertext Attack (CCA)”, which means that malicious entities that

perform actions targeting the tampering of data will be in vain.

3. Flexible format regarding the depiction of attributes, as the identity attributes can be

represented by any kind of string with no limitations.

OpenABE supports role-based ABE schemes, which is what we are going to utilize in

INCOGNITO. OpenABE also supports efficient management for storing and selecting private

ABE keys for decryption of ABE ciphertexts.

4.4 Blockchain
The blockchain technology will be integrated at the INCOGNITO platform with the goal of

immutably logging:

• Access rights that users give regarding their identity attributes

• IdP/IDC actions regarding users’ identity attributes they share with Service Providers

• Identity attributes saved on the blockchain

INCOGNITO will make use of a permissioned blockchain, adding a second layer of security in

order to ensure that the information logged on the distributed ledger, even if it is anonymized,

cannot be accessed by the public or entities that do not need to have access to it. All the entries in

the distributed ledger are transparent to the involved parties of the transactions and hold them

accountable for their actions.

4.4.1 Hyperledger Fabric
The Hyperledger Fabric18 framework gives developers the ability to build on top of a distributed

ledger technology, that is open source and mainly targeted at enterprise solutions. Hyperledger

18 https://www.hyperledger.org/use/fabric

https://www.hyperledger.org/use/fabric

 Deliverable D2.3 “Reference Architecture”

61

Fabric can be adapted and configured according to the needs and the architecture in which it will

be integrated to. If needed, Fabric is versatile and supports a variety of programming languages

that can be used to implement smart contracts, i.e. Golang19, Java20 and Node.js21, providing a very

big level of adaptability for the developers. Smart contracts (called chaincodes in Fabric) are

defined as applications deployed on the blockchain network and are executed by the participating

nodes. Moreover, the Fabric platform focuses on permissioned blockchains, which is the

technology that we are going to utilize in INCOGNITO. Different roles will be assigned to the

blockchain participants with the corresponding access rights. Hyperledger Fabric also has the

advantage of being compatible with a number of consensus algorithms among which the

developers can choose, making it easier to adopt solutions that do not require a native

cryptocurrency to reward miners. This results in threats reduction as malicious actors are not

motivated by any valuable asset that they could potentially acquire through illegal actions.

4.4.2 Ethereum
Ethereum22 is a generic blockchain platform developed under the Ethereum Foundation, with its

own native cryptocurrency, Ether. It carries common characteristics found in other

cryptocurrencies, i.e., digital nature, decentralized and not controlled by a central entity and used

to make payments across the globe. Moreover, the Ethereum platform give the ability to developers

to create applications that can be deployed on this specific blockchain infrastructure. We are

referring to smart contracts that can be utilized in a plethora of use cases. The smart contracts are

developed with the use of Solidity, a language designed specific for this purpose. The consensus

algorithm used by Ethereum is currently Proof-of-Work (PoW), but there are plans to migrate to a

less resource-consuming solution like Proof-of-Stake (PoS). Access to smart contracts is

performed at individual’s level and can be performed based on either ABAC or RBAC. Lastly,

Ethereum and its decentralized applications are all based on a public blockchain, which means that

the information logged on the corresponding distributed ledger is available to all, not just the

involved/interested parties.

4.4.3 Quorum
Quorum23 is an open source blockchain platform based on Ethereum, with the difference that it

has been optimized to target enterprise solutions. Quorum addresses the privacy issue mentioned

in Ethereum, as it is not public and available for everyone to look at the logged transactions.

Nonetheless, the access to certain resources remains ABAC or RBAC-based, same as the Ethereum

platform. Also, the consensus mechanism options have been broadened, as it supports pluggable

consensus algorithms, Raft consensus and pBFT. The smart contracts execution on the blockchain

is of significant importance; solidity is used as well for their implementation, which may pose

some adjustment difficulties for the developers.

19 https://golang.org/
20 https://www.java.com/en/
21 https://nodejs.org/en/
22 https://ethereum.org/
23 https://www.goquorum.com/

https://golang.org/
https://www.java.com/en/
https://nodejs.org/en/
https://ethereum.org/
https://www.goquorum.com/

 Deliverable D2.3 “Reference Architecture”

62

4.4.4 R3 Corda

Corda24 is an open source blockchain platform that makes it possible for businesses to perform

transactions without any middle-men, preserving privacy. Smart contracts are utilized in order to

log information regarding transaction costs and business operations in general. Developers are not

confined to a custom programming language for the smart contracts’ implementation, as Kotlin

and Java are available to choose from. R3 Corda is also flexible regarding the consensus algorithms

that can be incorporated; pluggability is a feature that many developers appreciate, while at the

same time Trusted Solo and Raft are provided. Access control is defined in relation to the

organization each user belongs to.

Below we can observe a summary of the characteristics of the aforementioned blockchain

platforms.

 Hyperledger

Fabric

Ethereum Quorum R3 Corda

Privacy Permissioned Public Permissioned/

Private

Permissioned

Consensus • Pluggable

• Trusted

Solo

• Kafka

• Proof

of

Work

• Pluggable

• Raft

• pBFT

• Pluggabl

e

• Trusted

Solo

• Raft

Access control Organization level

access control

(also ABAC &

RBAC – based)

ABAC &

RBAC – based

ABAC & RBAC

– based

Organization

level access

control

Programming

language
• Golang

• Java

• NodeJS

Solidity Solidity • Java

• Kotlin

Table 2. Summary of the characteristics of the studied blockchain platforms

4.4.5 INCOGNITO blockchain Network
In order to perform the actions described above on the blockchain, the network is going to be

comprised by the IDC and the Service Providers. These entities will be able submit transactions

on the distributed ledger and perform queries if needed in order to access old entries. Every

participant of the blockchain network will maintain an instance of the distributed ledger locally.

Below we describe the actions in more detail:
• The user logs in to his/her personal account on the IDC. Through the UMA integration, the

user is able to set a policy regarding sharing a set of identity attributes with a group of SPs.

That policy and access rights are submitted to the blockchain in the form of transactions.

The entity that performs the submission is the IDC, as soon as the user finalizes the changes

to the access rights on the profile.

24 https://www.r3.com/corda-platform/

https://www.r3.com/corda-platform/

 Deliverable D2.3 “Reference Architecture”

63

• When a user tries to utilize a service from an SP, the SP communicates with the IDC in

order to determine whether the identity attributes of the user are adequate to gain access to

the provided service. In response, the IDC relays a corresponding message, revealing the

user’s identity attributes needed by the SP, in case the user is indeed eligible to utilize the

service. The corresponding message is submitted to the distributed ledger by the SP, signed

by both the sender (IDC) and the receiver (SP). Note that the identity attributes may not be

implicitly revealed, but if a requirement is for example that the user must be over 18 years

old, and the IDC informs the SP that this requirement is met, then it is automatically

deducted that the user is over 18.

• The IDC will submit to the distributed ledger the values of the users’ identity attributes.

We provide an extra layer of security and we ensure that the entities participating on the

blockchain network will not be able to access the users’ attributes, as they will be

encrypted. The identity attribute values are submitted to the blockchain in order to give the

SPs the ability to verify that identity attributes they receive from the IDC have not been

tampered with or been subjected to a man-in-the-middle attack. This way the validity of

the identity attributes utilized to make use of an online service is ensured.

Figure 25. Blockchain network

The consensus algorithm that is going to be used for the blockchain implementation is the practical

Byzantine Fault Tolerance (pBFT). The consensus algorithm is utilized in order to successfully

submit entries on the distributed ledger by the network participants, which in this case are the IDC

and the SPs. More specifically, Byzantine fault tolerance is achieved when the participants of the

network that operate correctly reach an agreement on their values. A pBFT network consists of n

nodes; there is an upper limit of malicious or malfunctioning number of nodes that can be tolerated

by a pBFT network. This number is defined as a constant “f”, that is equal to one third of the nodes

in the network. If more than 1/3 of the network nodes are not operating correctly, the pBFT

algorithm will not work correctly.

pBFT is energy efficient as it does not make use of complex mathematical computations, compared

to Proof-of-Work (PoW) algorithm, which results in reduced use of computational resources and

 Deliverable D2.3 “Reference Architecture”

64

electricity consumption. An additional advantage over PoW is that the transactions do not require

confirmation from numerous different nodes after they have been agreed upon.

4.5 Near-Field Communication (NFC)

Near field communication (NFC), is a form of contactless communication between devices like

smartphones or tablets. Contactless communication allows a user to wave the smartphone over an

NFC compatible device to send information without needing to touch the devices together or go

through multiple steps setting up a connection.

Near field communication maintains interoperability between different wireless communication

methods like Bluetooth and other NFC standards. Founded in 2004 by Sony, Nokia, and Philips,

the forum enforces strict standards that manufacturers must meet when designing NFC compatible

devices. This ensures that NFC is secure and remains easy-to-use with different versions of the

technology. Compatibility is the key to the growth of NFC as a popular payment and data

communication method. It must be able to communicate with other wireless technologies and be

able to interact with different types of NFC transmissions.

In INCOGNITO, the NFC protocol will be part of the Identity Acquisition module. The user will

be able to acquire and verify his/her identity attributes from RFID-enabled physical ID documents

using his mobile device. These data will be securely stored on the IDC. The developed solution

will be in accordance with the GDPR guidelines.

4.5.1 NFC Implementations

1. ReadID

ReadID25 is an NFC ePassport reader application that allows users to scan and verify electronic ID

documents and also to read the personal information stored on the document. The application can

read modern passports and similar ID documents that have contactless RFID chips installed.

ReadID has a number of unique features:

• Establish authenticity of identity documents

• Read personal information from the chip

• Access to high resolution face image on chip

• Optical Character Recognition to scan machine-readable zone (MRZ) and interpret the

text for processing

• ReadID SDK’s integrated in an any app through APIs

Most of the contemporary smartphones in circulation have NFC functionality. ReadID is available

on iOS, from iOS 13, and on Android, from Android 5.0.

25 https://www.readid.com/about

https://www.readid.com/about

 Deliverable D2.3 “Reference Architecture”

65

2. Mobile ID

Mobile ID26 is a product offered by Gemalto, which is a digital centralized identity service based

on Mobile Connect. This solution is based on NFC for acquiring and verifying the users’ identity

information from their electronic ID documents.

It offers an identity verification solution that consists of:

• identity document verification

• customer authentication

• risk assessment

• ID verification report

automatic form filling with identity information

Figure 26. Mobile ID solution and identity verification process

3. Mobile Verify

Mobile Verify27 leverages the NFC protocol in order to verify the authenticity of an ePassporst

and can be integrated to any application that wants to perform identity verification. During the

verification process, they also requesting from the user to capture a selfie, which is compared with

the photo on the Identity document.

Mobile Verify’s ID verification engine is a modular cross-platform architecture, which is built on

machine learning and advanced computer vision algorithms. In order to achieve the highest

accuracy rates, Mitek’s technology was conceptualized to verify the authenticity of an ID

document in the following systematic approach:

• Guided document capture

• Document classification

• Data extraction

• Evaluation of authentic elements

26 http://www.gemalto.com/mobile/id-security/id-verification
27 https://www.miteksystems.com/mobile-verify

http://www.gemalto.com/mobile/id-security/id-verification
https://www.miteksystems.com/mobile-verify

 Deliverable D2.3 “Reference Architecture”

66

4. JMRTD

JMRTD28 is an open-source Java implementation of the Machine-Readable Travel Document

(MRTD) standards as specified by the International Civil Aviation Organization (ICAO).

The main features of JMRTD:

• Java API for accessing ICAO compliant eMRTDs and ePassports

• A Java Card eMRTD/ePassport emulator

• Java and Android supported

• Extended access control (EAC) and supplemental access control (SAC/PACE) supported

• LDS 1.7 decoding and encoding

• CBEFF datagroups fully supported

• JPEG2000 and WSQ encoded biometric images supported

 ReadID Mobile ID Mobile Verify JMRTD
Installation
/Configuration

One executable

application
One executable

application
One executable

application
Java

software/library
Open Source No No No Yes
Supported
Smartphones /

Platforms

From iOS 13 and

Android 5.0
iOS and
Android

iOS and
Android

Windows, Linux,

Mac OS X, and

Android
Development

Activity
Active Active Active Active

Documentation Detailed Not Available Not Available Detailed
Table 3. Comparison between available NFC-based Identity Acquisition implementations

Examining all the details presented in the above table, JMRTD seems to be the best solution to

suit the INCOGNITO project's needs.

4.6 WebRTC

With WebRTC, you can add real-time communication capabilities to the application that works on

top of an open standard. It supports video, voice, and generic data to be exchanged directly between

two or more peers, allowing developers to build powerful voice- and video-communication

solutions. The technology is available on all modern browsers as well as on native clients for all

major platforms. The technologies behind WebRTC are implemented as an open web standard and

available as regular JavaScript APIs in all major browsers. For native clients, like Android and

iOS applications, a library is available that provides the same functionality. The WebRTC project

is open-source and supported by Apple, Google, Microsoft and Mozilla, amongst others.

28 http://www.jmrtd.org/about.shtml

http://www.jmrtd.org/about.shtml

 Deliverable D2.3 “Reference Architecture”

67

INCOGNITO will utilize the WebRTC protocol, which provides browsers and mobile applications

with Real-Time Communications (RTC) capabilities via simple APIs. This solution offers remote

identity verification that allows a user to verify the identity of another user online as if they have

met in person.

To acquire and communicate streaming data, WebRTC implements the following APIs:

• MediaStream: gets access to data streams, such as from the users’ camera and microphone

• RTCPeerConnection: audio or video calling, with facilities for encryption and bandwidth
management

• RTCDataChannel: peer-to-peer communication of generic data

Moreover, there are several ways a real-time communication application or plugin might compromise
security. For example, first, an undecrypted media or data might be intercepted en-route between
browser, or between a browser and a server. Second, an application might record and distribute video or
audio without the user knowing. Third, malware or viruses might be installed alongside an innocuous
plugin or app.

Thus, WebRTC has several features to avoid these problems:

• WebRTC implementations use secure protocols such as Datagram Transport Layer Security
(DTLS) and Secure Real-time Transport Protocol (SRTP)

• Encryption is mandatory for all WebRTC components, including signaling mechanisms

• WebRTC is not a plugin, its components run in the browser sandbox and not in a separate
process, components do not require different installation, and are updated whenever the
browser is updated.

• Camera and microphone access must be granted explicitly and, when the camera or microphone
is running, this clearly shown by the user interface.

4.7 Tor Network

Tor is free and open-source software for enabling anonymous communication. Tor directs Internet

traffic through a free, worldwide, volunteer overlay network consisting of more than seven

thousand relays to conceal a user's location and usage from anyone conducting network

surveillance or traffic analysis. Using Tor makes it more difficult to trace Internet activity to the

user: this includes "visits to Web sites, online posts, instant messages, and other communication

forms". Tor's intended use is to protect the personal privacy of its users, as well as their freedom

and ability to conduct confidential communication by keeping their Internet activities

unmonitored.

In INCOGNITO, the Tor Network will be implemented in the User’s Device (using a Tor Network

library), offering a second layer of security on top of the Idemix protocol. Tor helps to reduce the

risks of both simple and sophisticated traffic analysis by distributing the user's transactions over

several places on the Internet so that no single point can link his destination. Instead of taking a

direct route from source to destination, data packets on the Tor network take a random pathway

through several relays that cover the user's tracks so no observer at any single point can tell where

the data came from or where it's going.

 Deliverable D2.3 “Reference Architecture”

68

To create a private network pathway with Tor, the Tor software incrementally builds a circuit of

encrypted connections through relays on the network. The circuit is extended one hop at a time,

and each relay along the way knows only which relay gave it data and which relay it is giving data

to. No individual relay ever knows the complete path that a data packet has taken.

Once a circuit has been established, many kinds of data can be exchanged, and several different

sorts of software applications can be deployed over the Tor network. Because each relay sees no

more than one hop in the circuit, neither an eavesdropper nor a compromised relay can use traffic

analysis to link the connection's source and destination.

5 Conclusions

The purpose of this deliverable was to define the reference architecture of the INCOGNITO

project. In this document, we first defined the reference architecture of the INCOGNITO platform

and we provided a detailed description of all the architectural components which are: 1) User

Device; 2) Identity Consolidator; 3) Decentralized Identity Management Blockchain; 4) Identity

Provider; and 5) Service Providers. In addition, we also provided a description of all the building

blocks of the INCOGNITO framework, while we also provided details about the main architectural

components that are involved to form each building block of INCOGNITO. In the end, we also

provided a description of all the protocols and technologies that will be used for the

implementation of this architecture in the individual work packages, and how each protocol is used

and enhanced in INCOGNITO.

We note that, the purpose of this deliverable was to define the architectural design of the

INCOGNITO platform and provide a general description of the how the components of the

architecture will communicate with each other, as well as a description of the protocols that will

be used and enhanced in order to facilitate the implementation of each architectural component

and the interactions between them. As a result, the outcome of this work is the starting point and

will guide the design and implementation of the individual architectural components in the

individual work packages of the project (WP3, WP5, WP6). More precisely, this document will

guide the implementation of WP3 and its respective architectural components and modules that

together will form a Qualified Anonymity framework. In addition, this deliverable provided all the

required details that are needed for the implementation of an Identity Acquisition, integration and

management platform, a user-friendly Consent Management platform, and the Identity

Consolidator component in general in the context of WP4. Last, in this deliverable we also

included a description of the components and modules that together will form the Advanced

UI/UX AI-based assistant that will be implemented in the context of WP5. A more detailed

description about the functionalities, as well as all the implementation details of each individual

architectural component will be provided in the corresponding future deliverables of WP3, WP4,

and WP5.

Last, we strongly believe that the reference architecture of INCOGNITO is able to address all the

weaknesses of today’s Web authentication schemes and deem the traditional password obsolete,

while also offering a privacy-preserving solution for device-centric and attribute-based

 Deliverable D2.3 “Reference Architecture”

69

authentication. Through the work performed in the context of this deliverable we were also able

to incorporate a qualified anonymity framework within such a solution that allows users to

preserve their privacy and remain untraceable while accessing services on the Web. At the same

time the defined Identity acquisition, integration and management platform allows users to

consolidate their multiple soft proofs of their fragmented online and real-world identities fast into

independent verifiable identity attributes that are stored at a decentralized identity management

blockchain network. In addition, the Advanced AI-based assistant and the user-friendly Consent

Management platform defined in this document enables users manage their identity and their

privacy in the level and way they desire.

Finally, we note that the architecture of the INCOGNITO platform and all its key aspects have

been well disseminated to the scientific community through the submission of a scientific journal

which has been accepted for publication at the IEEE Transactions on Information Forensics and

Security (TIFS)29. This scientific publication is also available in the list of publications of the

INCOGNITO website30.

29 https://incognito.socialcomputing.eu/wp-content/uploads/2019/publications/08931622.pdf
30 https://incognito.socialcomputing.eu/publications/

https://incognito.socialcomputing.eu/wp-content/uploads/2019/publications/08931622.pdf

 Deliverable D2.3 “Reference Architecture”

70

6 References

[1] M. P. Machulak, E. L. Maler, D. Catalano, and A. Van Moorsel, “User-managed access to

web resources,” 2010, doi: 10.1145/1866855.1866865.

[2] J. Camenisch and A. Lysyanskaya, “An Efficient System for Non-transferable

Anonymous Credentials with Optional Anonymity Revocation,” in Advances in

Cryptology --- EUROCRYPT 2001, 2001, pp. 93–118.

[3] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted Execution Environment: What It is,

and What It is Not,” in 2015 IEEE Trustcom/BigDataSE/ISPA, Aug. 2015, vol. 1, pp. 57–

64, doi: 10.1109/Trustcom.2015.357.

[4] R. Want, “Near field communication,” IEEE Pervasive Comput., vol. 10, no. 3, pp. 4–7,

Jul. 2011, doi: 10.1109/MPRV.2011.55.

[5] E. Yuan and J. Tong, “Attributed based access control (ABAC) for Web services,” in

IEEE International Conference on Web Services (ICWS’05), Jul. 2005, p. 569, doi:

10.1109/ICWS.2005.25.

[6] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep

bidirectional transformers for language understanding,” 2019.

[8] J. Camenisch and E. Van Herreweghen, “Design and implementation of the idemix

anonymous credential system,” 2002, doi: 10.1145/586110.586114.

